Ingestion of bivalve droppings by benthic invertebrates may lead to the transfer of nanomaterials in the aquatic food chain

Author:

Kuehr Sebastian,Diehle Noemi,Kaegi Ralf,Schlechtriem ChristianORCID

Abstract

Abstract Background Manufactured nanomaterials (MNMs) are released into the environment in increasing quantities. Consequently, MNMs also reach the aquatic environment, where they can interact with different organisms. Previous studies have already shown that filter-feeding bivalves can ingest nanomaterials from the surrounding water leading to higher concentration of the material. Furthermore, they have been shown to be vectors for environmental chemicals and pathogens to other organisms, as their feces/pseudofeces (F/pF) play a crucial role as a food source for other species. We exposed bivalves (Corbicula sp.) to MNMs and performed experiments to investigate the possible transport of MNMs by their feces to the benthic amphipod Hyalella azteca. Silver (Ag) and gold (Au) nanoparticles (NPs) as well as fluorescent polystyrene nanoparticles were used in this study. They allowed the investigation of the metal content of the bivalves’ feces and the amphipods feeding on it, as well as the localization of the fluorescent particles in the body of the animals. Results Examination of the feces by fluorescence microscope and determination of the total metal content by inductively coupled plasma mass spectrometry (ICP-MS) showed a high accumulation of the exposed MNMs in the F/pF. The examination of fecal matter, using transmission electron microscopy confirmed the nanoparticulate character of the metals in the examined fecal matter. After exposure of amphipods to the MNMs containing fecal matter, the fluorescent MNMs were localized in the animals gut. The chronic exposure of juvenile amphipods over 21 days to feces enriched with Au MNMs caused significant effects on the growth of the amphipods. The transfer of both metals (Ag and Au) from the fecal matter to the amphipods was confirmed after total metal measurements. Conclusion Probably, for the first time, it has been shown that when exposed to MNMs bivalves can transfer these particles to other benthic species. Transfer is via released F/pF upon which the benthic species feed and thus could ingest the particles. The high concentrations of MNMs in the fecal matter raises concerns about the potential accumulation and transfer of the materials and associated ecotoxicological effects in invertebrates such as benthic amphipods.

Funder

Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3