Author:
Luo Yueyun,Yao Qiao,Ding Pei,Hou Min,Deng Fuchang,Wang Youbin,Ding Cheng,Li Xia,Wang Duochun,Sun Zongke,Tang Song,Mao Yixin,Yao Xiaoyuan
Abstract
AbstractDust events are concerning due to their potential to cause environmental pollution and health issues by carrying numerous particles from various regions. However, the risks of airborne bacteria from dust have not yet been thoroughly investigated. This study aimed to reveal the particle size distribution, antibiotic resistance, microbial community structure, and diversity of airborne bacteria by using culture methods, and assess the potential health risks by calculating the dose expectation $$(\overline{d })$$
(
d
¯
)
, daily short-term intake (STI), and Hazard Index (HI) during an extreme dust event in urban Beijing (China). Airborne bacteria were sampled before, during, and the day after a severe dust event in March 2021 in Beijing using the six-stage impactor. The major findings were as follows: (1) airborne bacterial concentration increased during the dust event, and inhalable bacteria account for 67.93%. The Hazard Index (HI) of cultivable and inhalable airborne bacteria in men, women, and children exposed to dust events was up to 1.42 and 1.54 times higher than that in individuals who were not exposed, respectively. HI was 1.52 times higher in children than in men when exposed to the dust event. (2) The percentage of Gram-positive bacteria (GPB) resistant to different antibiotics was altered. The abundance of ciprofloxacin-resistant bacteria increased by 24.51%, while that of clindamycin-resistant bacteria decreased by 34.64%. The $$\overline{d }$$
d
¯
, STI, and HI of antibiotic-resistant bacteria per breath for men, women, and children after the dust event were 14 times greater than those before the dust event. (3) The diversity of airborne bacteria increased throughout the dust event. Opportunistic bacteria were found after the dust event. From a health perspective, airborne bacteria during extreme dust events should be further studied for their sources, changes, human exposure, and so forth. Government-scale measures are necessary to control dust dissemination.
Graphical Abstract
Funder
Population Antibiotic Resistant Bacteria and Antibiotic Resistance Gene Project in Typical Areas
consultancy projectby the Chinese Academy of Engineering
Young Scholar Scientific Research Foundation of National Institute of Environmental Health, China CDC
National Science and Technology Basic Resources Survey Project, China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献