Stacked genetically modified soybean harboring herbicide resistance and insecticide rCry1Ac shows strong defense and redox homeostasis disturbance after glyphosate-based herbicide application

Author:

Zanatta Caroline Bedin,Benevenuto Rafael Fonseca,Nodari Rubens Onofre,Agapito-Tenfen Sarah ZanonORCID

Abstract

Abstract Background World agricultural production of genetically modified (GM) products, in particular, the combination of different traits/genes in the same plant has been a trend over the last decade. There have been concerns raised over stacking multiple herbicide and insect-resistant transgenes that could result in fitness costs depending on the type and strength of selection pressures exerted by the environment. Here, we report the results of transcriptomic analysis comparing the effect of glyphosate-based herbicide (GBH) in the single-transgene versus stacked, herbicide-resistant soybean varieties on various biological processes, metabolic pathways, and key shikimic enzymes. Results Gene expression data showed that defense metabolism and redox homeostasis were equally modulated in single-transgene and stacked-variety samples. Carbon accumulation and energy metabolisms were distinct between the varieties and photosynthesis metabolism was found negatively affected in the single-transgene variety only. In the stacked variety, the shikimate pathway was modulated by the accumulation of transcripts from phenylalanine gene and other cascade genes. As expected, the expression of native EPSPS was upregulated in both varieties when herbicide was applied. On the other hand, transgenic EPSPS expression was down-regulated in both GM varieties upon herbicide application which cannot be explained. Conclusion Glyphosate-based herbicides toxicity suggests its effects on carbon central metabolism and flux, redox metabolism, photosynthesis, and to hormone and defense response in plants. The observed unintended effects in GM herbicide-tolerant varieties unravel the deleterious effects previously observed on GM-tolerant varieties growth and production. The impact of GBH on shikimate and cascade pathways was observed in terms of both native and transgenic insensitive EPSPS modulation, alteration of jasmonic acid and lignin metabolism in both single-transgene and stacked variety. The energy metabolism and carbon flux were differently affected in these varieties. Oxidative stress, more specifically glutathione metabolism, induced by GBH, was also observed in this study. The stacked variety showed a more pronounced stress response (activation of specific stress defense proteins, Rboh, WRKY) and secondary compounds (β-glucosidase, isoflavone 7-O-methyltransferase). Omics profiling techniques, such as transcriptomics, can be considered tools to support risk assessment in detecting unintended effects due to the GBH application.

Funder

Bundesamt für Naturschutz

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference102 articles.

1. ISAAA 2018 (2019) Press Release International Service for the Acquisition of Agri-biotech applications biotech crops continue to help meet the challenges of increased population and climate change. http://www.isaaa.org/resources/publications/briefs/54/. Accessed 15 may 2020

2. Schütte G, Eckerstorfer M, Rastelli V et al (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29(5):1–12. https://doi.org/10.1186/s12302-016-0100-y

3. De Schrijver A, Devos Y, Van den Bulcke M et al (2007) Risk assessment of GM stacked events obtained from crosses between GM events. Trends Food Sci Technol 18:101–109. https://doi.org/10.1016/j.tifs.2006.09.002

4. CTNbio (2010) Liberação comercial de soja geneticamente modificada resistente a insetos e tolerante a herbicida: Soja MON 87701 × MON 89788. In: Parec. técnico no 2542/2010. http://ctnbio.mcti.gov.br/liberacao-comercial/-/document_library_display/SqhWdohU4BvU/view/678023#/liberacao-comercial/consultar-processo. Accessed 15 May 2020

5. Londo JP, Bollman MA, Sagers CL et al (2011) Changes in fitness-associated traits due to the stacking of transgenic glyphosate resistance and insect resistance in Brassica napus L. Heredity (Edinb) 107:328–337. https://doi.org/10.1038/hdy.2011.19

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3