Rainfall modeling using two different neural networks improved by metaheuristic algorithms

Author:

Sammen Saad Sh.,Kisi Ozgur,Ehteram Mohammad,El-Shafie Ahmed,Al-Ansari Nadhir,Ghorbani Mohammad Ali,Bhat Shakeel Ahmad,Ahmed Ali Najah,Shahid Shamsuddin

Abstract

AbstractRainfall is crucial for the development and management of water resources. Six hybrid soft computing models, including multilayer perceptron (MLP)–Henry gas solubility optimization (HGSO), MLP–bat algorithm (MLP–BA), MLP–particle swarm optimization (MLP–PSO), radial basis neural network function (RBFNN)–HGSO, RBFNN–PSO, and RBFGNN–BA, were used in this study to forecast monthly rainfall at two stations in Malaysia (Sara and Banding). Different statistical measures (mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) and percentage of BIAS (PBIAS)) and a Taylor diagram were used to assess the models’ performance. The results indicated that the MLP–HGSO performed better than the other models in forecasting rainfall at both stations. In addition, transition matrices were computed for each station and year based on the conditional probability of rainfall or absence of rainfall on a given month. The values of MAE for testing processes for the MLP–HGSO, MLP–PSO, MLP–BA, RBFNN–HGSO, RBFNN–BA, and RBFNN–PSO at the first station were 0.712, 0.755, 0.765, 0.717, 0.865, and 0.891, while the corresponding NSE and PBIAS values were 0.90–0.23, 0.83–0.29, 0.85–0.25, 0.87–0.27, 0.81–0.31, and 0.80–0.35, respectively. For the second station, the values of MAE were found 0.711, 0.743, 0.742, 0.719, 0.863 and 0.890 for the MLP–HGSO, MLP–PSO, MLP–BA, RBFNN–HGSO, RBFNN–BA, and RBFNN–PSO during testing processes and the corresponding NSE–PBIAS values were 0.92–0.22, 0.85–0.28, 0.89–0.26, 0.91–0.25, 0.83–0.31, 0.82–0.32, respectively. Based on the outputs of the MLP–HGSO, the highest rainfall was recorded in 2012 with a probability of 0.72, while the lowest rainfall was recorded in 2006 with a probability of 0.52 at the Sara Station. In addition, the results indicated that the MLP–HGSO performed better than the other models within the Banding Station. According to the findings, the hybrid MLP–HGSO was selected as an effective rainfall prediction model.

Funder

Technische Hochschule Lübeck

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3