Regrettable substitution? Comparative study of the effect profile of bisphenol A and eleven analogues in an in vitro test battery

Author:

Reininger NatalieORCID,Oehlmann Jörg

Abstract

Abstract Background Bisphenol A (BPA) is currently one of the most widely used synthetic chemicals in the production of a wide range of plastics. Due to its diverse endocrine disrupting potential alternative bisphenols, also referred to as analogues, have been developed. Although the toxicity of BPA is well studied, the (eco)toxicological effects of the bisphenol analogues are largely unknown. The similar molecular structure of the analogues suggests comparable toxicological effects. This study aims to extend the (eco)toxicological knowledge on the bisphenol analogues by evaluating eleven bisphenol analogues compared to the reference substance BPA in in vitro bioassays. The examined endpoints are endocrine potential on three nuclear receptors in recombinant yeast cells of Saccharomyces cerevisiae, baseline toxicity (also referred to as non-specific toxicity, describing the minimal toxicity of a chemical) in the luminescent bacterium Aliivibrio fischeri, and mutagenicity in two strains of Salmonella typhimurium. Results Bisphenol A showed estrogenic and anti-androgenic activity at EC50 concentrations of 0.516 mg/L (2.26 × 10–6 M) and 1.06 mg/L (4.63 × 10–6 M), respectively. The assays confirmed notable estrogenic and anti-androgenic activity for the vast majority of analogues in comparable, and often higher, efficacies to BPA. Some analogues showed anti-estrogenic instead of estrogenic activity in a range from 0.789 mg/L (1.45 × 10–6 M; TBBPA) to 2.69 mg/L (2.46 × 10–6 M; BADGE). The baseline toxicity of the analogues revealed a similar tendency of comparable to more prominent effects compared to BPA, ranging from 5.81 mg/L (1.73 × 10–5 M; BPAF) to 39.1 mg/L (1.56 × 10–4 M; BPS). There was no evidence of mutagenicity found. Conclusion The examined bisphenol analogues prove to be equally, if not more, problematic in endocrine activities than the reference bisphenol A. Based on these results, the tested bisphenols cannot be regarded as safer alternatives and reinforce the notion of bisphenol analogues being considered as regrettable substitutions.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3