Spatiotemporal distribution patterns and risk characteristics of heavy metal pollutants in the soil of lead–zinc mines

Author:

Cao Jie,Xie Cheng-yu,Hou Zhi-ru

Abstract

Abstract Background The current soil environmental assessment system is inadequate in terms of the spatiotemporal distribution of heavy metal pollutants. This study employed the numerical simulation technique to predict spatiotemporal distribution patterns of heavy metals within 50 days and to assess the soil risk characteristics of heavy metal pollution near a lead–zinc mine in Hunan Province, China. Results The spatiotemporal distribution results indicate that the soil in the sewage plant and mining areas served as the pollution center, exhibiting a ladder-shaped pollution diffusion trend outward. When the pollution migration time reached 20 days, pollutant migration and changes tended to remain stable, high-pollution areas exhibited no drastic changes within 10 m, and low-pollution and medium-pollution areas revealed obvious changes. Moreover, the low-pollution area width approached 2 m, the depth reached 2 m, the medium-pollution area width was close to 2.5 m, and the depth approached 4 m. The percentage of areas containing lead–zinc mine soil with high to extremely high risks reached 82.88%, and extremely high-risk farmland, mining and residential areas accounted for up to 100%, 95% and 90%, respectively, of the total area. Among the pollution sources, high-risk and extremely high-risk areas in regard to heavy metal Cd accounted for 13.51 and 49.55%, respectively, of the total area. Conclusion This study provides new insights into the migration patterns and risk characteristics of pollutants to address soil environmental assessment system problems.

Funder

Natural Science Foundation of Hunan Province

Hunan Provincial Department of Education General Project

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3