Pesticides, cancer, and oxidative stress: an application of machine learning to NHANES data

Author:

Liu Yanbin,Li Kunze,Li Chaofan,Feng Zeyao,Cai Yifan,Zhang Yu,Hu Yijian,Wei Xinyu,Yao Peizhuo,Liu Xuanyu,Jia Yiwei,Lv Wei,Zhang Yinbin,Zhou Zhangjian,Wu Fei,Yan Wanjun,Zhang Shuqun,Du Chong

Abstract

Abstract Background The large-scale application of pyrethroids and organophosphorus pesticides has great benefits for pest control. However, the increase of cancer incidence rate in recent years has also caused public concern about the health risks of pesticides. Hence, we utilized data from the National Health and Nutrition Examination Survey (NHANES) to assess the association and risk between pesticide exposure and several cancers, along with the comprehensive impact of oxidative stress. In this study, six cancers and six common pesticides were included to analyze their correlation and risk. And the levels of eight oxidative stress marks and two inflammatory markers were used for stratified analysis. Multiple logistic regression analysis was applied to estimate the odds ratio and 95% confidence intervals. Machine learning prediction models were established to evaluate the importance of different exposure factors. Results According to the data analyzed, each pesticide increased the risk of three to four out of six cancers on average. Iron, aspartate aminotransferase (AST), and gamma glutamyl transferase levels positively correlated with cancer risk in most cases of pesticide exposure. Except for demographic factors, factors such as AST, iron, and 3-phenoxybenzoic acid showed high contributions to the random forest model, which was consistent with our expectations. The receiver operating characteristic curve showed that the prediction model had sufficient accuracy (74.2%). Conclusion Our results indicated that specific pesticide exposure increased the risk of cancer, which may be mediated by various oxidative stress mechanisms. Additionally, some biochemical indicators have the potential to be screened for cancer prevention.

Funder

National Science Foundation of China

Shaanxi Administration of Traditional Chinese Medicine

Construction Project of Key Laboratory of Tumor Prevention and Treatment of Integrated Traditional Chinese and Western Medicine of Shaanxi Province

The Key Research and Development Program of Shaanxi

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3