Author:
Lundqvist Johan,Mandava Geeta,Oskarsson Agneta
Abstract
Abstract
Background
Endocrine disrupting chemicals have been identified for a number of human endocrine systems, but there are no reports on vitamin D-antagonistic activities in environmental samples.
Objectives
We have investigated if there are compounds present in the environment that can act as Vitamin D receptor (VDR) antagonists.
Methods
Water samples were collected of the influent and effluent water from five Swedish wastewater treatment facilities and concentrated with solid phase extraction. VDR antagonistic properties of the samples were tested with a cell-based in vitro assay responsive to vitamin D signaling. Cytotoxicity was monitored by three different assays.
Results
We observed a dose-dependent decrease in the VDR signaling in most studied samples, although the effect was overlapping with cytotoxicity for the influent samples. For effluent samples, we observed clear VDR antagonistic effects also in non-cytotoxic concentrations. The observed effects could not be explained by presence of natural organic matter or cadmium in the water.
Discussion
The vitamin D endocrine system regulates a broad range of physiological processes, and disruption of this system could be associated with serious health consequences. In this study, we report environmental presence of compounds with VDR antagonistic properties, compounds which constitute a new group of potential endocrine disruptors. The VDR antagonism was observed in wastewater treatment facility effluent waters, which are discharged into water systems used as raw water for drinking water production. The findings reported in this study may indicate a potential hazard to human health and aquatic life. Future research is needed to investigate the presence of VDR antagonists in the environment, identification of the causative compounds, and studies of exposure of humans and aquatic organisms to these compounds.
Funder
Svenska Forskningsrådet Formas
Swedish University of Agricultural Sciences
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献