Grouping strategies for assessing and managing persistent and mobile substances

Author:

Chirsir ParvielORCID,Palm Emma H.ORCID,Baskaran SivaniORCID,Schymanski Emma L.ORCID,Wang ZhanyunORCID,Wolf RaoulORCID,Hale Sarah E.ORCID,Arp Hans Peter H.ORCID

Abstract

Abstract Background Persistent, mobile and toxic (PMT), or very persistent and very mobile (vPvM) substances are a wide class of chemicals that are recalcitrant to degradation, easily transported, and potentially harmful to humans and the environment. Due to their persistence and mobility, these substances are often widespread in the environment once emitted, particularly in water resources, causing increased challenges during water treatment processes. Some PMT/vPvM substances such as GenX and perfluorobutane sulfonic acid have been identified as substances of very high concern (SVHCs) under the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) regulation. With hundreds to thousands of potential PMT/vPvM substances yet to be assessed and managed, effective and efficient approaches that avoid a case-by-case assessment and prevent regrettable substitution are necessary to achieve the European Union's zero-pollution goal for a non-toxic environment by 2050. Main Substance grouping has helped global regulation of some highly hazardous chemicals, e.g., through the Montreal Protocol and the Stockholm Convention. This article explores the potential of grouping strategies for identifying, assessing and managing PMT/vPvM substances. The aim is to facilitate early identification of lesser-known or new substances that potentially meet PMT/vPvM criteria, prompt additional testing, avoid regrettable use or substitution, and integrate into existing risk management strategies. Thus, this article provides an overview of PMT/vPvM substances and reviews the definition of PMT/vPvM criteria and various lists of PMT/vPvM substances available. It covers the current definition of groups, compares the use of substance grouping for hazard assessment and regulation, and discusses the advantages and disadvantages of grouping substances for regulation. The article then explores strategies for grouping PMT/vPvM substances, including read-across, structural similarity and commonly retained moieties, as well as the potential application of these strategies using cheminformatics to predict P, M and T properties for selected examples. Conclusions Effective substance grouping can accelerate the assessment and management of PMT/vPvM substances, especially for substances that lack information. Advances to read-across methods and cheminformatics tools are needed to support efficient and effective chemical management, preventing broad entry of hazardous chemicals into the global market and favouring safer and more sustainable alternatives.

Funder

European Union’s Horizon 2020 research and innovation programme

Natural Sciences and Engineering Research Council of Canada

Fonds National de la Recherche Luxembourg

Publisher

Springer Science and Business Media LLC

Reference150 articles.

1. Fuller R, Landrigan PJ, Balakrishnan K et al (2022) Pollution and health: a progress update. Lancet Planet Health 6:e535–e547. https://doi.org/10.1016/S2542-5196(22)00090-0

2. United Nations (2015) Resolution adopted by the General Assembly on 25 September 2015. Transforming our world: the 2030 Agenda for Sustainable Development. https://undocs.org/Home/Mobile?FinalSymbol=A%2FRES%2F70%2F1&Language=E&DeviceType=Desktop&LangRequested=False

3. Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K (2020) Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol 54:2575–2584. https://doi.org/10.1021/acs.est.9b06379

4. Kim S, Chen J, Cheng T et al (2023) PubChem 2023 update. Nucleic Acids Res 51:D1373–D1380. https://doi.org/10.1093/nar/gkac956

5. PubChem (2023) PubChem-Explore Chemistry. https://pubchem.ncbi.nlm.nih.gov/. Accessed 4 Dec 2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3