Mixture toxicity analysis in zebrafish embryo: a time and concentration resolved study on mixture effect predictivity

Author:

Jakobs GianinaORCID,Krüger Janet,Schüttler AndreasORCID,Altenburger Rolf,Busch WibkeORCID

Abstract

Abstract Background Humans and wildlife are continuously exposed to chemical mixtures. These mixtures vary in composition but typically contain hundreds of micropollutants at low concentrations. As it is not feasible to measure the toxicity of all possibly occurring mixtures, there is a need to predict mixture toxicity. Two models, Concentration Addition (CA) and Independent Action (IA), have been applied to estimate mixture toxicity. Here, we compared measured with predicted toxicity of nine mixtures designed from 15 environmentally relevant substances in zebrafish embryos to investigate the usability of these models for predicting phenotypic effects in a whole organism short term acute assay. Results In total, we compared 177 toxicity values derived from 31 exposure scenarios with their predicted counterparts. Our results show that mixture toxicity was either correctly estimated (86%) by the prediction window, the concentration-effect space that is spanned between both models, or was underestimated with both models (14%). The CA model correctly predicted the measured mixture toxicity in 100% of cases when a prediction deviation factor of 2.5 was allowed. However, prediction accuracy of mixture toxicity prediction was dependent on exposure duration and mixture potency. The CA model showed highest prediction quality for long-term exposure with highly potent mixtures, respectively, whereas IA proved to be more accurate for short-term exposure with less potent mixtures. Obtained mixture concentration–response curves were steep and indicated the occurrence of remarkable combined effects as mixture constituents were applied at concentrations below their respective individual effect threshold in 90% of all investigated cases. Conclusions Experimental factors, such as exposure duration or mixture potency, influence the prediction accuracy of both inspected models. The CA model showed highest prediction accuracy even for a set of diverse mixtures and various exposure conditions. However, the prediction window served as the most robust predicator to estimate mixture toxicity. Overall, our results demonstrate the importance of considering mixture toxicity in risk assessment schemes and give guidance for future experiment design regarding mixture toxicity investigations.

Funder

Seventh Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3