In silico ecotoxicity assessment of photoinduced imidacloprid degradation using HPLC–HRMS, QSAR and ecotoxicity equivalents

Author:

Voigt Melanie,Langerbein Victoria,Jaeger MartinORCID

Abstract

Abstract Background Imidacloprid is among the most widely used insecticides and today is found in surface and ground water worldwide. It has been registered in the EU watchlist for monitoring. To prevent imidacloprid from entering water bodies, advanced oxidation processes (AOP) have been intensely researched. Photo-irradiation proved one of the most efficient methods to degrade and eliminate anthropogenic micropollutants from waters. The ecotoxicity assessment of photoinduced degradation and transformation products especially in the absence of reference standards is still heavily explored. Results In this study, UVA and UVC irradiation in combination with titanium dioxide P25 as photocatalyst were investigated for their degrading and eliminating effects and effectiveness on imidacloprid. Humic acid was used as natural organic matter additive. High-performance liquid chromatography coupled with high-resolution mass spectrometry allowed to identify and monitor imidacloprid and its degradation intermediates yielding seven new structures and concentration–time (c–t) profiles. The correlation of structures and the application of radical scavengers and photocatalyst helped distinguish between direct photoinduced and indirect hydroxyl radical-induced degradation mechanisms. The identification of hydroxylated products and intermediates indicated the indirect degradation pathway, which could be suppressed by addition of a radical scavenger. The absence of hydroxylated intermediates and fragments pointed towards the direct absorption-induced degradation. Two degradations products were traced back to the direct mechanism, whereas all other products followed the indirect mechanism. The ecotoxicity of the identified compounds was assessed by quantitative structure–activity relationship (QSAR) analysis. Most products were predicted as less ecotoxic. Ecotoxicity equivalents (ETEs) were introduced allowing a classified ranking of the products and an assessment of the overall hazardous potential of the irradiated solution at a given moment. Generally, the number of hydroxyl substituents was inversely correlated to ecotoxicity. From the c-t curves, time-dependent ETE profiles were established. Conclusions Structure elucidation and c-t profiles from liquid chromatography–high-resolution mass spectrometry allowed to distinguish between direct and indirect degradation mechanisms. Structure specific ecotoxicity assessment could be achieved through QSAR analysis. Ecotoxicity hazard was ranked based on ETEs. The time-dependent ETE profile proved suitable to reflect the effect of irradiation duration and allow to estimate the irradiation time required to eliminate ecotoxicity, which may be relevant for potential applications in wastewater treatment plants.

Funder

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

Hochschule Niederrhein

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference72 articles.

1. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

2. Syafrudin M, Kristanti RA, Yuniarto A et al (2021) Pesticides in drinking water—a review. Int J Environ Res Public Health 18:468. https://doi.org/10.3390/ijerph18020468

3. Pietrzak D, Kania J, Malina G et al (2019) Pesticides from the EU first and second watch lists in the water environment. Clean—Soil Air Water. https://doi.org/10.1002/clen.201800376

4. European Union (2015) Commission Implementing Decision

5. (EU) 2015/495 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off J Eur Union, L 78/40-42, 24.3.2015. http://data.europa.eu/eli/dec_impl/2015/495/oj

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3