Insight into temporal–spatial variations of DOM fractions and tracing potential factors in a brackish-water lake using second derivative synchronous fluorescence spectroscopy and canonical correlation analysis

Author:

Lu KuotianORCID,Xu Weining,Yu Huibin,Gao Hongjie,Gao Xiaobo,Zhu Ningmei

Abstract

Abstract Background Insight into temporal–spatial variations of dissolved organic matter (DOM) fractions were undertaken to trace potential factors toward a further understanding aquatic environment in Lake Shahu, a brackish-water lake in northwest China, using synchronous fluorescence spectroscopy (SFS) combined with principal component analysis (PCA), second derivative and canonical correlation analysis (CCA). Result Five fluorescence peaks were extracted from SFS by PCA, including tyrosine-like fluorescence (TYLF), tryptophan-like fluorescence (TRLF), microbial humic-like fluorescence (MHLF), fulvic-like fluorescence (FLF), and humic-like fluorescence (HLF), whose relative contents were obtained by second derivative synchronous fluorescence spectroscopy. The increasing order of total fluorescence components contents was July (11,789.38 ± 12,752.61) < April (12,667.58 ± 15,246.91) < November (19,748.87 ± 17,192.13), which was attributed to tremendous enhancement in TYLF content from April (1615.56 ± 258.56) to November (5631.96 ± 634.82). The PLF (the sum of TYLF and TRLF) dominated the fluorescence components, whose proportion was 40.55, 37.09, or 46.91% in April, July, or November. DOM fractions in November were distinguished from April and July, which could be attributed to that water of the Yellow River was continuously loaded into the lake as water replenishment from April to September. From the replenishment period to non-replenishment, the contents of the five components gradually changed from low in the middle and high around the lake to high throughout entire lake. Based on the CCA results, the potential factors included TYLF, TRLF, MHLF, SD, and BOD5 in April, which were relative to organic matter pollution. The potential factors contained TYLF, TRLF, FLF, Chl-a, TP, CODCr, and DO in July, indicating the enrichment of TP lead algae and plants growth. The potential factors in November consisted of TYLF, TRLF, CODCr, SD, TN, and FLF, representing residue of the algae and plants have been deeply degraded. Conclusion The replenishment of water led to enrichment of TP, resulting in growth of algae and plants, and was the key factor of water quality fluctuations. This work provided a workflow from perspective of DOM to reveal causes of water quality fluctuations in a brackish-water lake and may be applied to other types of waterbodies.

Funder

ningxia hui autonomous region science and technology research project for environmental protection

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3