Critical evaluation of the microbial turnover to biomass approach for the estimation of biogenic non-extractable residues (NER)

Author:

Trapp Stefan,Brock Andreas Libonati,Kästner MatthiasORCID,Schäffer AndreasORCID,Hennecke Dieter

Abstract

Abstract Background Persistence is a key criterion for the risk assessment of chemicals. In degradation tests, microbial biodegradation of labeled test chemicals leads to the incorporation of the label in microbial biomass, resulting in biogenic non-extractable residues (bioNER), which are not considered as harmful in persistence assessment. The amount of bioNER can be estimated using the microbial turnover to biomass (MTB) model. MTB estimates the biomass growth during productive degradation of a compound from theoretical growth yield and CO2-formation and gives an upper and a lower value for bioNER formation. The aim of this study is use available experimental data for bioNER to assess the validity, accuracy and precision of the MTB method as new tool in persistence assessment. Results We collected experimental data in order to test accuracy and precision of this estimation method. In total, 16 experimental studies were found in literature where bioNER was experimentally quantified. Hereof, 13 studies used the amount of label recovered from total amino acid (tAA) content as proxy for bioNER. Unfortunately, the comparison with experimental data was difficult due to the variety of employed methods. A conversion factor is required to extrapolate from tAA on bioNER, and this factor may vary during the experiment and between experiments. The bioNER formation for all compounds tested was calculated with the MTB method, and the outcome was compared to measured tAA as proxy for bioNER. The relation between predicted and measured bioNER was significant, but no better correlation was obtained than with CO2 to tAA. The mean absolute error of the prediction (low MTB versus tAA) was 5% applied label (range 0.3 to 16%). Some deviation between measured results and calculated bioNER could be contributed to uncertainties in the experimental determination, as shown by variance in replicates (bromoxynil) or high background of label in sterile samples (sulfadiazine). Conclusions MTB thus provides a robust model for determining of the potential amounts of biomass and bioNER formed from the degradation of organic chemicals.

Funder

Helmholtz-Zentrum für Umweltforschung GmbH - UFZ

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference51 articles.

1. Cousins IT, Ng CA, Wang ZY, Scheringer M (2019) Why is high persistence alone a major cause of concern? Environ Sci Processes Impacts 21(5):781–792. https://doi.org/10.1039/c8em00515j

2. EC European Commission (2006) Regulation (EC) No 1907/2006 of the European Parliament and the Council of 18 December 2006 concerning Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Official Journal of the European Union

3. EC European Commission (2006) Regulation

4. (EC) No 1907/2006 of the European Parliament and the Council of 18 December 2006 concerning Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Official Journal of the European Union; 2006, L 136

5. OECD (2002a) Test No. 307: aerobic and anaerobic transformation in soil, OECD Guidelines for the Testing of Chemicals, Section 3, OECD Publishing, Paris, https://doi.org/10.1787/9789264070509-en

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3