Reducing overall herbicide use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds

Author:

Cech Ramona M.,Jovanovic Suzanne,Kegley Susan,Hertoge Koen,Leisch FriedrichORCID,Zaller Johann G.ORCID

Abstract

Abstract Background Pesticide use has been associated with risks for human health and an overall decline in biodiversity. Although herbicides are the most commonly used pesticides worldwide, they have received less attention in this debate. We investigated the extent to which long-term trends in herbicide use in Austria influence potential toxic exposures to non-target organisms and potential risks to humans. We analyzed official sales data of 101 herbicide active ingredients (AIs) approved in Austria between 2010 and 2019 regarding their ecotoxicological properties based on lethal doses (LD50 and LC50) weighed by their persistence in the environment (DT50) for honeybees (Apis mellifera), earthworms (Eisenia fetida), and birds (Serinus serinus). Human health risks were qualitatively assessed based on official hazard statements for the AIs used. Results In Austria, herbicide amounts sold decreased significantly by 24% from 1480 to 1123 tonnes between 2010 and 2019. This also led to a considerable decrease in the amounts of AIs classified by H-statements of the EU Pesticides Database: − 71% acute inhalation toxicity, − 58% reproductive toxicity,− 47% specific target organ toxicity. Yet, 36% of herbicides used were still classified as highly hazardous pesticides according to the Pesticide Action Network. Surprisingly, over the same period, toxic loads to honeybees increased by 487% (oral exposure), while lethal toxic loads to earthworms increased by 498%, and to birds by 580%. This can be attributed to a shift toward the use of more acutely toxic and especially more persistent AIs. The most problematic AI for honeybees, earthworms, birds and humans was the highly persistent diquat. The further ranking of the most toxic herbicides varied considerably depending on the organism. It is important to note that this toxic load assessment, like official environmental risk assessments, evaluates the potential risk but not the actual fatalities or real-world exposure. Conclusions Our results show a trade-off between herbicide amounts and toxicological hazards to humans and other non-target organisms. These interdependencies need to be considered when implementing pesticide reduction targets to protect public health and biodiversity, such as the EU´s “farm-to-fork” strategy, which aims to reduce the amounts and risks of synthetic pesticides.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3