Indoor monitoring of heavy metals and NO2 using active monitoring by moss and Palmes diffusion tubes

Author:

Zechmeister Harald G.ORCID,Rivera Marcela,Köllensperger Gunda,Marrugat Jaume,Künzli Nino

Abstract

Abstract Background Indoor pollution is a real threat to human health all over the world. Indoor pollution derives from indoor sources (e.g. smoking, gas stoves, coated furniture) as well as from outdoor sources (e.g. industries, vehicles). Long-term monitoring measurements in indoor environments are missing to a large extent due to a lack of simple to operate measuring devices. Mosses proved well as biomonitors in hundreds of studies. Nevertheless, indoor use has been extremely scarce. Therefore, this study aimed to determine indoor and outdoor pollution by active biomonitoring using moss as well as NO2 samplers to analyse outdoor and indoor levels of pollution. We exposed moss (Pleurozium schreberi) for 8 weeks indoors and outdoors in 20 households in the city of Girona, Spain. Al, Cr, Cu, Zn, Sn, Cd, Pb, Mo, and Sb were analysed by moss-samplers. Additionally, NO2 was measured with Palmes diffusion tubes. Results Compared to the pre-exposure analysis, concentrations of almost all elements both on indoor and outdoor mosses increased. Except for Cd, all metals and NO2 had, on average, higher concentrations in outdoor mosses than at corresponding indoor sites. However, some 20% of the samples showed inverse patterns, thus, indicating both indoor and outdoor sources. Indoor/outdoor correlations of elements were not significant, but highest for markers of traffic-related pollution, such as Sn, Sb, and NO2. The wide range of indoor–outdoor ratios of NO2 exemplified the relevance of indoor sources such as smoking or gas cooking. Though mostly excluded in this study, a few sites had these sources present. Conclusions The study at hand showed that moss exposed at indoor sites could be a promising tool for long-time biomonitoring. However, it had also identified some drawbacks that should be considered in future indoor studies. Increments of pollutants were sometimes really low compared to the initial concentration and therefore not detectable. This fact hampers the investigation of elements with low basic element levels as, e.g. Pt. Therefore, moss with real low basic levels is needed for active monitoring, especially for future studies in indoor monitoring. Cloned material could be a proper material for indoor monitoring yet never was tested for this purpose.

Funder

Agence Française de Sécurité Sanitaire de l'Environnement et du Travail

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference50 articles.

1. US-EPA (2017) Indoor Air Quality (IAQ). . https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality. Accessed 20 May 2020.

2. WHO (2018) Burden of disease from the joint effects of household and ambient Air pollution for 2016. https://www.who.int/airpollution/data/AP_joint_effect_BoD_results_May2018.pdf. Accessed 20 May 2020.

3. WHO (2020) Air Pollution. WHO. https://www.who.int/news-room/air-pollution. Accessed 8 Dec 2020.

4. Schweizer C, Edwards RD, Bayer-Oglesby L, Gauderman WJ, Ilacqua V, Juhani Jantunen M, Lai HK, Nieuwenhuijsen M, Künzli N (2007) Indoor time–microenvironment–activity patterns in seven regions of Europe. J Expo Sci Environ Epidemiol 17(2):170–181. https://doi.org/10.1038/sj.jes.7500490

5. Schweizer L, Edwards R, Gaudermann J, Ilacqua V, Jantunen M, Lai H, Nieuwenhuijsen M, Künzli N (2006) Exposure relevant indoor activity-patterns in seven regions of Europe. J Exp Anal Environ Epidemiol. https://doi.org/10.1038/sj.jes.7500490

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3