Degradation and sorption of the herbicide pelargonic acid in subsoils below railway tracks compared to a range of topsoils

Author:

Poiger Thomas,Müller Joanna,Kasteel Roy,Buerge Ignaz J.

Abstract

Abstract Background Pelargonic acid is a non-selective herbicide derived from natural sources with a range of potential applications in areas where synthetic herbicides may be less acceptable. One such use area is weed control on railway tracks. To assess the potential leaching of pelargonic acid to groundwater for this specific use, we conducted degradation and sorption studies with soils from railway tracks and, for comparison, with a range of topsoils. Results Degradation of pelargonic acid was very rapid in subsoils from railway tracks with half-lives (DT50) of < 1 day (geom. mean DT50, 5.8 h), and even faster in the selected agricultural topsoils (1.5 h). The starting concentration had a strong influence with much slower degradation at higher spike levels. Adsorption to the railway soils (alkaline soils with low organic matter content) was expectedly weak (Freundlich adsorption coefficients KF of 0.06–0.31 mL/g) and clearly stronger in the topsoils (0.2–40 mL/g). Organic carbon normalized adsorption coefficients (KFoc) ranged from 11 to 371 mL/g (all soils) and were pH dependent, consistent with the behaviour of weak acids. Computer modelling using the software PELMO and a set of scenarios for herbicide use on railway tracks developed for the authorisation in Germany yielded predicted environmental concentrations in groundwater of < 0.001 µg/L when parameterised with the adsorption and degradation endpoints from subsoils. Conclusions The leaching potential of pelargonic acid may be considered low even in application scenarios with sandy soils with low organic matter content such as those found below railway tracks.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3