Unveiling the impact of glycerol phosphate (DOP) in the dinoflagellate Peridinium bipes by physiological and transcriptomic analysis

Author:

Yang Yanjun,Shi Junqiong,Jia Yunlu,Bai Fang,Yang Songqi,Mi Wenmei,He Shuhan,Wu Zhongxing

Abstract

Abstract Background The ability to use dissolved organic phosphorus (DOP) is important for survival and competition when phytoplankton are faced with scarcity of dissolved inorganic phosphorus (DIP). However, phosphorus availability to the freshwater dinoflagellate Peridinium bipes has received relatively little attention, the efficiency of glycerol phosphate use by phytoplankton has rarely been investigated, and the regulatory molecular mechanisms remain unclear. Result In the present study, cultures of the freshwater dinoflagellate Peridinium bipes were set up in 119 medium (+DIP), DIP-depleted 119 medium (P-free), and β-glycerol phosphate-replacing-DIP medium (+DOP). Gene expression was analyzed using transcriptomic sequencing. The growth rate of cells in DOP treatment group was similar to that in DIP group, but chlorophyll a fluorescence parameters RC/CS0, ABS/CS0, TR0/CS0, ET0/CS0 and RE0/CS0 markedly decreased in the DOP group. Transcriptomic analysis revealed that genes involved in photosynthesis, including psbA, psbB, psbC, psbD, psaA and psaB, were downregulated in the DOP group relative to the DIP group. Glycerol-3-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase, rather than alkaline phosphatase, were responsible for β-glycerol phosphate use. Intercellular gluconeogenesis metabolism was markedly changed in the DOP group. In addition, genes involved in ATP synthases, the TCA cycle, oxidative phosphorylation, fatty acid metabolism and amino acid metabolism in P. bipes were significantly upregulated in the DOP group compared with the DIP treatment. Conclusions These findings suggested that β-glycerol phosphate could influence the photosynthesis and metabolism of P. bipes, which provided a comprehensive understanding of the phosphorus physiology of P. bipes. The mechanisms underlying the use of β-glycerol phosphate and other DOPs are different in different species of dinoflagellates and other phytoplankton. DIP reduction may be more effective in controlling the bloom of P. bipes than DOP reduction.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3