Options for an environmental risk assessment of intentional and unintentional chemical mixtures under REACH: the status and ways forward

Author:

Hassold EnkenORCID,Galert Wiebke,Schulze JonaORCID

Abstract

AbstractIt is acknowledged that a variety of chemicals enter the environment and may cause joint effects. Chemicals regulated under the European Chemicals Regulation REACH are often part of formulated mixtures and during their processing and use in various products they can be jointly released via sewage treatment plants or diffuse sources, and may combine in the environment. One can differentiate between intentional mixtures, and unintentional mixtures. In contrast to other substance-oriented legislations, REACH contains no explicit requirements for an assessment of combined effects, exposures and risks of several components. Still, it requires ensuring the safe use of substances on their own, in mixtures, and in articles. The available options to address intentional as well as unintentional mixtures are presented and discussed with respect to their feasibility under REACH, considering the responsibilities, communication tasks and information availability of the different actors (registrants, downstream-user and authorities). Specific mixture assessments via component-based approaches require a comprehensive knowledge on substances properties, uses, fate and behaviour, and the composition of the mixture under consideration. This information is often not available to the responsible actor. In principle, intentional mixtures of known composition can be assessed by the downstream-user. But approaches have to be improved to ensure a transparent communication and sound mixture assessment. In contrast, unintentional mixtures appear to be better addressable via generic approaches such as a mixture allocation factor during the chemical safety assessment, although questions on the magnitude, implementation and legal mandates remain. Authorities can conduct specific mixture risk assessments in well-defined and prioritized cases, followed by subsequent regulatory measures. In order to address intentional and unintentional mixtures within the current REACH framework, legal mandates together with guidance for the different actors are needed. Furthermore, further data on mixture compositions, uses and co-exposures need to be made accessible via shared databases.

Funder

bundesministerium für umwelt, naturschutz und reaktorsicherheit

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference59 articles.

1. Ahting M, Brauer F, Duffek A, Ebert I, Eckhardt A, Hassold E, Helmecke M, Kirst I, Krause B, Lepom P et al. (2018) Recommendations for reducing micropollutants in waters—background paper German environment agency. ISSN 2363-829x

2. Backhaus T, Blanck H, Faust M (2010) Hazard and risk assessment of chemical mixtures under REACH—state of the art, gaps and options for improvement. PM 3/10. Swedish chemicals agency—KEMI (http://www.Kemi.Se)

3. Backhaus 2021. Improving the regulatory assessment of combination effects: steps towards implementing the mixture assessment factor (MAF) in chemical regulation; report PM 8/21, Swedish Chemicals Agency KEMI; Article number: 511 421. https://www.kemi.se/publikationer/pm/2021/pm-8-21-improving-the-regulatory-assessment-of-combination-effects-steps-towards-implementing-the-mixture-assessment-factor-maf-in-chemical-regulation

4. Bopp S, Berggren E, Kienzler A, Linden Svd, Worth A (2015) Scientific methodologies for the assessment of combined effects of chemicals—a survey and literature review. J Tech Rep. Eur 27471 en. European Union

5. Bopp SK, Kienzler A, Linden Svd, Lamon L, Paini A, Parissis N, Richarz A-N, Triebe J, Worth A (2016) Review of case studies on the human and environmental risk assessment of chemical mixtures. J Tech Rep Eur 27968 en. https://doi.org/10.2788/272583

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3