Tryptophan-like fluorescence as a fingerprint of dry-weather misconnections into storm drainage system

Author:

Yin HailongORCID,Wang Yue,Yang Yang,Huang Jingshui,Xu Zuxin

Abstract

Abstract Background Inappropriate dry-weather misconnections into storm drainage system are a demanding environmental problem worldwide, which leads to unexpected dry-weather discharge into surface waters. It often costs a large amount of manpower and resources to identify the source of misconnections and estimate its contributions. In this study, we evaluated the possibility of quantifying proportional source contribution in a storm drainage system with dry-weather misconnections from domestic sewage and river water inflow, using rapid and low-cost fluorescence spectroscopy methods. For this purpose, samples of both misconnection sources and outflows of storm drainage system were collected and analyzed in a downtown catchment of Shanghai, China. Results Results showed that fluorescent peak intensity of tryptophan-like T1 in domestic sewage (802 ± 126 a.u.) was significantly higher than that in urban river water (57 ± 12 a.u.), while fluorescent peak intensities of tryptophan-like T2 in urban river water (732 ± 304 a.u.) was much higher than that in domestic sewage (261 ± 64 a.u.) due to increased algal activity in the local river and upstream inflow chemistry. However, only peak T2 passed the conservative behavior test in the incubation experiments, which could be used as a fingerprint for quantitatively identifying the misconnections. We further developed a Bayesian fluorescence mass balance model (FMBM) to infer the percentage of dry-weather misconnections into the storm drainage system as a function of fluorescence intensities of peak T2 in the samples of sources and outflow. It was found that the maximum posteriori probability estimate of the percentage of river water intrusion into the storm drains was up to 20.8% in this site, which was validated by the results of on-site investigation. Conclusion Our findings implied that in situ fluorescent sensors and Bayesian FMBM for the fingerprint fluorescence peak could be applied to fast track inappropriate dry-weather misconnections into storm drainage system qualitatively and quantitatively with low costs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3