The hierarchy of multiple stressors’ effects on benthic invertebrates: a case study from the rivers Erft and Niers, Germany
-
Published:2022-10-08
Issue:1
Volume:34
Page:
-
ISSN:2190-4707
-
Container-title:Environmental Sciences Europe
-
language:en
-
Short-container-title:Environ Sci Eur
Author:
Markert Nele,Guhl Barbara,Feld Christian K.
Abstract
Abstract
Background
A variety of anthropogenic stressors influences the ecological status of rivers wordwide. Important stressors include elevated concentrations of nutrients, salt ions, heavy metals and other pollutants, habitat degradation and flow alteration. Some stressors tend to remain underrepresented in multiple-stressor studies, which in particular is apparent for micropollutants (e.g. pesticides, pharmaceuticals) and alterations of the flow regime. This case study analysed and compared the effects of 19 different stressor variables on benthic macroinvertebrates in the two German rivers Erft and Niers (Federal State of North Rhine-Westphalia, Germany). The stressors variables were assigned to four stressor groups (physico-chemical stress, mixture toxicity of 42 micropollutants, hydrological alteration and morphological degradation) and were put into a hierarchical context according to their relative impact on the macroinvertebrate community using redundancy analysis and subsequent variance partitioning.
Results
The results suggest a strong and unique effect of physico-chemical stress, yet at the same time reveal also a strong joint effect of physico-chemical and hydrological stressor variables. Morphological degradation showed subordinate effects. Notably, only a minor share of the explained variance was attributed to the mixture toxicity of micropollutants in these specific catchments.
Conclusions
The stressor hierarchy indicates that management measures for improving the ecological status still need to address water quality issues in both rivers. The strong joint effect of physico-chemical stress and hydrological alteration might imply a common source of both stressor groups in these two catchment areas: lignite mining drainage, urban area and effluents of wastewater treatment plants. The findings point at the important role of alterations in the flow regime, which often remain unconsidered in hydro-morphological surveys.
Funder
Ministry of the Environment, Nature and Transport of the State of North Rhine-Westfalia Landesamt für Natur, Umwelt und Verbraucherschutz NRW
Publisher
Springer Science and Business Media LLC
Reference103 articles.
1. Lemm JU, Venohr M, Globevnik L, Stefanidis K, Panagopoulos Y, van Gils J, Posthuma L, Kristensen P, Feld CK, Mahnkopf J, Hering D, Birk S (2021) Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration. Glob Change Biol. https://doi.org/10.1111/gcb.15504 2. Liess M, Liebmann L, Vormeier P, Weisner O, Altenburger R, Borchardt D, Brack W, Chatzinotas A, Escher B, Foit K, Gunold R, Henz S, Hitzfeld KL, Schmitt-Jansen M, Kamjunke N, Kaske O, Knillmann S, Krauss M, Küster E, Link M, Lück M, Möder M, Müller A, Paschke A, Schäfer RB, Schneeweiss A, Schreiner VC, Schulze T, Schüürmann G, von Tümpling W, Weitere M, Wogram J, Reemtsma T (2021) Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Res 201:117262. https://doi.org/10.1016/j.watres.2021.117262 3. Birk S, Chapman D, Carvalho L, Spears B, Argillier C, Auer S, Baattrup-Pedersen A, Beklioglu M, Borja Á, Branco P, Bucak T, Buijse AD, Cardoso A, Couture R-M, Cremona F (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat Ecol Evol. https://doi.org/10.1038/s41559-020-1216-4 4. Ormerod SJ, Dobson M, Hildrew AG, Townsend CR (2010) Multiple stressors in freshwater ecosystems. Freshw Biol 55:1–4. https://doi.org/10.1111/j.1365-2427.2009.02395.x 5. Monk W, Wood P, Hannah D, Wilson D, Extence C, Chadd R (2006) Flow variability and macroinvertebrate community response within riverine systems. River Res Applic 22:595–615. https://doi.org/10.1002/rra.933
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|