Abstract
Abstract
Background
Spring waters, which are fed mainly by near-surface groundwater, provide a comprehensive picture of emissions of nitrate and other pollutants caused by the type and intensity of land use in the topographic catchment area. One aim of this study was to develop a model for predicting the contribution of nonpoint-source inputs to the nitrate load of small- and medium-sized watercourses based on the type of agricultural use in the catchment areas.
Methods
Fifty-five springs in the German Land Saarland and the adjacent Rhineland-Palatinate were monitored for pollutants during three monitoring periods of at least 12 months between 2000 and 2019. The catchment areas are representative of the natural regions in the study area and are outside the influence of settlements and other developments. In addition to nitrate and other physicochemical parameters, 25 agriculturally impacted springs were screened for pesticides and their metabolites.
Results
Since the first measurements were taken in 2000, the vast majority of agriculturally impacted springs have consistently exhibited high nitrate concentrations of between 20 and 40 mg/L NO3−. Springs not influenced by agriculture contained an average of 3.6 mg/L nitrate. The extreme values observed in the early 2000s decreased to the limit value of 50 mg/L, but most of the springs with moderate levels exhibited an increase to approximately 30 mg/L. The number of pesticidal agents detected in the spring waters demonstrated a clear correlation with the watershed’s amount of arable land and the nitrate content detected. Moreover, we found a highly significant correlation between nitrate content and the share of cropland in the catchment area. From this, we derived a regression model that could be used to quantify the share of nitrate pollution attributable to nonpoint-source inputs for larger catchments in the region under investigation.
Conclusion
Nitrate discharged from farmland has not decreased since the European Water Framework Directive (EU WFD) entered into force. At the historically extremely heavily polluted sites, measures have been implemented that have led to compliance with the limit value of the Nitrate Directive. However, below this limit, nitrate levels have increased significantly almost everywhere in the last two decades. We therefore recommend introducing stricter requirements for official water pollution control, such as the marine ecological target value.
Funder
Universität des Saarlandes
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs. Engineering, theory, management, and sustainability. Butterworth-Heinemann, Oxford
2. Williams DD (1991) The spring as an interface between groundwater and lotic fauna and as a tool in assessing groundwater quality. Verh Internat Verein Limnol 24:1621–1624
3. Katz BG, Chelette AR, Pratt TR (2004) Use of chemical and isotopic tracers to assess nitrate contamination and groundwater age, Woodville Karst Plain, USA. J Hydrol 289:36–61
4. Beven K (1989) Interflow. In: Morel-Seytoux HJ (ed) Unsaturated flow in hydrologic modeling. NATO ASI series (series: C mathematical and physical sciences), vol 275. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2352-2_7
5. Tian S, Youssef MA, Richards RP, Liu J, Baker DB, Liu Y (2016) Different seasonality of nitrate export from an agricultural watershed and an urbanized watershed in Midwestern USA. J Hydrol 541:1375–1384
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献