Assessment of mercury pollution sources in beach sand and coastal soil by speciation analysis

Author:

Gallego José Luis R.,López-Antón Maria AntoniaORCID,de la Rosa Deva Martínez,Rodríguez-Valdés Eduardo,García-González Nerea,Rodríguez Elena,Martínez-Tarazona Maria Rosa

Abstract

Abstract Background An essential requisite for controlling and monitoring mercury in the environment is to identify its species in different types of soils and sediments, as this will help not only to establish its mobility in the environment and ecosystem and the degree of its toxicity, but also to establish the source of contamination. The objective of this work was to identify the origin of mercury in beach sands and soil taken from a coastal region with previously high mining and industrial activity by characterizing the mercury species using the technique known as thermal desorption (HgTPD). Results Apart from quartz, the main mineral species identified in the raw sands and soil were calcite, fluorite and barite. The concentration of mercury ranges from 5 to 23 µg g−1, and although it is distributed in different proportions in the function of the size, thermal desorption profiles demonstrated that the mercury species present in the samples do not vary with the mercury concentration and the particle size. By means of HgTPD, mercury oxide (HgO) was identified in the beach sands, whereas mercury sulfide (HgS) was found in the soil sample taken from the vicinity of the beach. Complementary methodologies foster the HgTPD conclusions and verify that mercury is present mostly in insoluble stable (HgS) or low-mobility (HgO) forms in the samples studied. Analyses by ICP-MS after sequential extraction and HPLC separation of mercury species show that inorganic mercury is the predominant form in the samples. Conclusions The technique HgTPD is a very useful tool to ascertain the origin of mercury in contaminated beach sands and shoreline soils. In the particular area studied in this work, the species identified indicate that previous mining activity was the source of the mercury and rule out the possibility that contamination is derived from coal combustion activities ongoing in the region.

Funder

Plan Regional de Asturias

Ministerio de Economía, Industria y Competitividad, Gobierno de España

URICI, Consejo Superior de Investigaciones Científicas

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3