Testing particles using the algal growth inhibition test (OECD 201): the suitability of in vivo chlorophyll fluorescence measurements

Author:

Hund-Rinke KerstinORCID,Schlinkert Ruben,Schlich Karsten

Abstract

Abstract Background The freshwater algae and cyanobacteria growth inhibition test (OECD test guideline 201) is frequently used to assess the ecotoxicity of chemicals or particles. A central issue is the measurement of algal growth by quantifying algal biomass over time. Chlorophyll fluorescence measurements are recommended for the testing of particles. The analysis of in vivo fluorescence is the simplest and fastest approach, but is only suitable if there is no interference with the materials. Therefore, in vitro fluorescence analysis is often preferred. We carried out a comprehensive comparison of chlorophyll fluorescence measurements in vitro and in vivo to evaluate the suitability of rapid in vivo testing for the determination of Raphidocelis subcapitata biomass in the presence of diverse particles. Results For the in vitro measurement, we applied a method that separates particles from chlorophyll using locust bean gum. We tested inorganic and organic particles (including alloys and polymers), ion-releasing and non-releasing materials, and particle sizes in the nanometer to micrometer range with a variety of shapes (spherical, flaky and fibrous). Some of the materials were nontoxic, whereas others showed varying degrees of toxicity (ErC50 = 0.2–100 mg/L in both methods). There were only minor differences between the methods in ErC50 values and the percent inhibition at various test concentrations, but the confidence intervals for the ErC50 values in vivo were narrower and were covered by the range observed in vitro. The in vivo approach showed no limitations, whereas the validity criteria listed in OECD test guideline 201 were not always fulfilled by the in vitro measurements. Conclusion The in vivo approach was a suitable and time-saving method for a wide range of particles, although we cannot completely exclude the possibility that some particles may interfere with fluorescence measurement. To avoid false assessments, pre-tests with simple measurements are therefore recommended. Graphical abstract

Funder

Bundesministerium für Bildung und Forschung

Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME, Molekulare Biotechnologie

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference19 articles.

1. OECD (2011) OECD Guidelines for the testing of chemicals. Test Guideline 201: freshwater alga and cyanobacterial, growth inhibition test. Organisation for Economic Co-operation and Development, Paris, http://www.oecd-ilibrary.org/docserver/download/9720101e.pdf?expires=1497009075&id=id&accname=guest&checksum=B05A403DAB471E46DEDD582972FEDABE

2. ECHA (2017b) Guidance on information requirements and chemical safety assessment. Chapter R.7b Endpoint specific guidance. Draft Version 4.0. https://echa.europa.eu/documents/10162/13632/information_requirements_r7b_en.pdf/1a551efc-bd6a-4d1f-b719-16e0d3a01919

3. ECHA (2017a) Guidance on information requirements and chemical safety assessment. Appendix R7–1 for nanomaterials applicable to Chapter R7b Endpoint specific guidance. Version 2.0. https://echa.europa.eu/documents/10162/13632/appendix_r7b_nanomaterials_en.pdf/6eca425a-ede1-4c9e-8151-af77973caf32

4. OECD (2020) Guidance document on aquatic and sediment toxicological testing of nanomaterials Series on Testing and Assessment No 317. www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2020)8&doclanguage=en

5. Scherer C, Weber A, Lambert S, Wagner M (2018) Interactions of microplastics with freshwater biota. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer International Publishing, Cham, pp 153–180

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3