Investigating the uptake and fate of per- and polyfluoroalkylated substances (PFAS) in bean plants (Phaseolus vulgaris): comparison between target MS and sum parameter analysis via HR-CS-GFMAS

Author:

Gehrenkemper Lennart,Rühl Isabel,Westphalen Tanja,Simon Fabian,von der Au Marcus,Cossmer Antje,Meermann Björn

Abstract

AbstractIn this study, we present a screening method based on molecular absorption spectrometry to study PFAS uptake and fate in plants. To evaluate the suitability of this method we analyzed plant extracts with molecular absorption spectrometry (MAS) as well as liquid chromatography–tandem mass spectrometry (LC–MS/MS) for mass balance studies (w(F)). French bean plants (Phaseolus vulgaris) were grown on soil spiked using eight PFAS substances that vary in chain length and functional group composition. Specifically, these include three short-chained (C4–C5), five long-chained (C7–C10) carboxylic acids, one sulfonic acid and one sulfonic amide moieties. To investigate substance-specific PFAS uptake systematically, PFAS were spiked as single substance spike. Additionally, we studied one mixture of the investigated substances in equal proportions regarding w(F) and four PFAS mixtures of unknown composition. After 6 weeks, the plants were separated into four compartments. We analyzed the four compartments as well as the soil for extractable organically bound fluorine (EOF) by high resolution-continuum source-graphite furnace-molecular absorption spectrometry (HR-CS-GFMAS) as well as for sum of ten target-PFAS by LC–MS/MS. All three short-chained PFAS perfluorobutanoic acid (PFBA), perfluorobutanoic sulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were determined in high concentrations mainly in the fruits of the investigated plants while long-chained PFAS perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were mainly determined in roots. PFBS was determined in remarkably high concentrations in leaves compartment by both quantification methods. Overall, comprehensive results of single substance spikes were in good agreement for both methods except for a few cases. Hence, two phenomena were identified: for mixed PFAS spikes of unknown composition huge differences between EOF and sum of target PFAS were observed with systematically higher EOF values. Overall, both methods indicate comparable results with MS being more reliable for known PFAS contamination and MAS being more valuable to identify PFAS exposure of unknown composition. Graphical Abstract

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Wirtschaft und Energie

Umweltbundesamt

Bundesanstalt für Materialforschung und -prüfung (BAM)

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference25 articles.

1. OECD. Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs). In: OECD environment, health and safety publications series on risk management, No. 39, Paris; 2018.

2. EPA. CompTox Chemicals Dashboard; 2022. https://comptox.epa.gov/dashboard/chemical-lists/PFASSTRUCT. Accessed 6 Jan 2023.

3. OECD. Reconciling terminology of the universe of per- and polyfluoroalkyl substances: recommendations and practical guidance. OECD environment, health and safety publications series on risk management No 61 (ENV/CBC/MONO(2021)25); 2021.

4. Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B et al (2020) Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 18(9):6223–6391

5. Cousins IT, DeWitt JC, Glüge J, Goldenman G, Herzke D, Lohmann R et al (2020) The high persistence of PFAS is sufficient for their management as a chemical class. Environ Sci Process Impacts 22(12):2307–2312

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3