Abstract
Abstract
Background
Understanding the responses of riverine dissolved carbon dynamics and chemical weathering processes to short-term climatic variabilities is important to understand the Surface-Earth processes under ongoing climate change. Temporal variations of solutes and stable carbon isotope of dissolved inorganic carbon (δ13CDIC) were analysed during a hydrological year in the Guijiang River, South China. We aimed to unravel the chemical weathering processes and carbon dynamics in karst areas under ongoing climate changes.
Results
Significant positive relationships were found between weathering rates and climatic factors (i.e. temperature and discharge) over the hydrological year. The total flux of CO2 consumption (760.4 × 103 mol/km2/year) in the Guijiang River was much higher than the global mean flux, with a higher CO2 consumption capacity in the Guijiang River relative to most other global rivers. Chemical weathering fluxes in this karst area showed high sensitivity to global climate change. CO2 evasion during the warm–wet seasons was much lower than those during cold–dry seasons. Light δ13CDIC values occurred under high-flow conditions, corresponding with the high temperatures in high-flow seasons. IsoSource modelling revealed that biological carbon could account for 53% of all dissolved inorganic carbon (DIC), controlling the temporal carbon variabilities.
Conclusion
This study quantitatively evaluated the temporal variations in CO2 fluxes and carbon cycling of karstic river systems and demonstrated that riverine carbon cycling will have a higher sensibility to ongoing global climate change. High discharges accelerate solutes transport, with relatively large quantities of 13C-depleted carbon being flushed into rivers. Meanwhile, high temperatures also accelerate organic carbon mineralisation, producing high content of soil CO2, whose influx can shift the 13C-depleted values in the high-flow seasons. Taken together, biological carbon influx should be responsible for the temporal carbon dynamics.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Strategic Priority Research Program of Chinese Academy of Sciences
Guizhou Education Department Fund
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献