Natural attenuation along subsurface flow paths based on modeling and monitoring of a pesticide metabolite from three case studies

Author:

Herrmann MarcoORCID,Sur Robin

Abstract

Abstract Background Groundwater—especially for the use as drinking water—is a strictly protected resource in the existing guidelines for pesticide registration and drinking water protection in the EU. One aspect that has hardly played a role in this context so far is the attenuation of pesticide concentrations along the flow path from the regulatory leaching concentration at a depth of 1 m below the applied field to raw water abstraction systems. The soil metabolite N,N-dimethylsulfamide (DMS) is formed from two fungicidal substances: tolylfluanid and dichlofluanid. According to the EU guidance document on relevant metabolites in groundwater, DMS is a “non-relevant” metabolite. However, long-term application of the two active substances on permanent crops has resulted in elevated and quantifiable amounts of DMS in groundwater catchment areas of water supplying plants. Therefore, in the case of DMS, substantial monitoring data is available. This enables in combination with groundwater modeling, a quantitative analysis of the natural attenuation of DMS concentrations over time and distance. To this end, extensive real-world data from three case studies of drinking water catchment areas in Germany were analyzed. Results The environmental fate of DMS in soil and groundwater was evaluated according to the respective data determined at the study sites. Analyses using monitoring data and combined modeling approaches as well, were performed to obtain comparable results. These merged outcomes from monitoring and modeling show total attenuation factors of 12–93 from leachate at 1 m depth down to monitoring wells—close to raw water collection. If concentration attenuation further downwards to collected raw water is considered, the overall attenuation factor is even higher (40–246). Conclusions The conditions at the catchment areas of the three case studies are very diverse, thus providing a wide range of attenuating conditions. When following the path of DMS from its formation in soil below a treated field, to its leaching into the aquifer, and within the aquifer down to the raw water collection site, its concentration in water is continuously and consistently decreasing. The results from DMS represent conservative estimations due to non-sorptive, quick transport processes. Extended to other sorptive solutes, it represents the lower end of expected attenuation. Therefore, natural pesticide concentration attenuation processes are suggested for the consideration in regulatory pesticide risk assessments for a more realistic yet still protective evaluation of expected concentrations in raw water.

Funder

Bayer CropScience

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference42 articles.

1. European Commission (2003) Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances regulated under Council Directive 91/414/EC, Sanco/221/2000 –rev.10- final.

2. Schmidt CK, Brauch H-J (2008) N, N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ Sci Technol 42(17):6340–6346

3. Schmidt CK (2007) N,N-Dimethylsulfamid (DMS)—Ein Problemstoff mit zwei Gesichtern. Nachrichten aus dem Technologiezentrum Wasser Karlsruhe 22

4. European Food Safety Authority (2005) Conclusion regarding the peer review of the pesticide risk assessment of the active substance tolylfluanid. EFSA J 1–76

5. Fischer T, Haakh F, Kiefer J, Rogg J-M (2019) Belastung der Rohwasserressourcen für die Trinkwasserversorgung in Baden-Württemberg mit Rückständen von Pflanzenschutzmitteln. Grundwasserdatenbank Wasserversorgung, Karlsruhe, Germany

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3