Fate simulation and risk assessment of TBT and TPhT considering water level fluctuations in the TGR before and after AFS Convention implementation in China

Author:

Gao Jun-minORCID,Fu Ping-ting,Chen Xiao-ling,Guo Jin-song,Hou Xian-yu,Zeng Jie,Chen Zhu-man

Abstract

AbstractBackgroundThe Three Gorges Reservoir (TGR) is the largest freshwater reservoir in China. Previous studies showed that organotin pollution is present in the TGR. In June 2011, the AFS Convention went into effect in China. In order to explore the pollution evolution processes of tributyltin (TBT) and triphenyltin (TPhT) before and after implementation of the AFS Convention and their variations with water level fluctuations in the TGR, the characteristic parameters of the TGR and the physicochemical parameters of TBT and TPhT were used to develop a level IV multimedia fugacity model considering water level fluctuations to simulate the fate, transfer, and transport of TBT and TPhT in the TGR. Based on the simulation results, exposure concentrations of TBT and TPhT were then used to assess the ecological and health risks in the TGR region (TGRR).ResultsThe simulation results showed that the average concentrations of both TBT and TPhT decreased in all compartments except the sediment, whereas the total content of the system continued to increase after the AFS Convention was implemented. The concentration of TBT in the sediment was higher than that in fish, while the concentration of TPhT in fish was much greater than that in the sediment. The total contents of both TBT and TPhT were highest in the sediment phase. In addition, variations in water level of the TGR significantly affected the distribution and transport of TBT and TPhT in the TGR.ConclusionsSediment is an important source and sink of TBT and TPhT, and the water level regulation of the TGR strengthened the two roles of sediment. Both TBT and TPhT in surface water, but especially TBT, carried significant chronic exposure risks to the aquatic community of the TGR. Intake of TPhT, mainly through eating fish, posed a potential health risk to the population in the TGRR.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation Project of CQ CSTC

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3