Abstract
Abstract
Background
Tropical coral reefs have been recognized for their significant ecological and economical value. However, increasing anthropogenic disturbances have led to progressively declining coral reef ecosystems on a global scale. More recently, several studies implicated UV filters used in sunscreen products to negatively affect corals and possibly contribute to regional trends in coral decline. Following a public debate, bans were implemented on several organic UV filters and sunscreen products in different locations including Hawaii, the U.S. Virgin Islands and Palau. This included banning the widely used oxybenzone and octinoxate, while promoting the use of inorganic filters such as zinc oxide even although their toxicity towards aquatic organisms had been documented previously. The bans of organic UV filters were based on preliminary scientific studies that showed several weaknesses as there is to this point no standardized testing scheme for scleractinian corals. Despite the lack of sound scientific proof, the latter controversial bans have already resulted in the emergence of a new sunscreen market for products claimed to be ‘reef safe’ (or similar). Thus, a market analysis of ‘reef safe’ sunscreen products was conducted to assess relevant environmental safety aspects of approved UV filters, especially for coral reefs. Further, a scientifically sound decision-making process in a regulatory context is proposed.
Results
Our market analysis revealed that about 80% of surveyed sunscreens contained inorganic UV filters and that there is a variety of unregulated claims being used in the marketing of ‘reef safe’ products with ‘reef friendly’ being the most frequently used term. Predominantly, four organic UV filters are used in ‘reef safe’ sunscreens in the absence of the banned filters oxybenzone and octinoxate. Analysis of safe threshold concentrations for marine water retrieved from existing REACH registration dossiers could currently also safeguard corals.
Conclusion
There is a substantial discrepancy of treatments of organic versus inorganic UV filters in politics as well as in the ‘reef safe’ sunscreen market, which to this point is not scientifically justified. Thus, a risk-based approach with equal consideration of organic and inorganic UV filters is recommended for future regulatory measures as well as a clear definition and regulation of the ‘reef safe’ terminology.
Publisher
Springer Science and Business Media LLC
Reference91 articles.
1. AIMS (Australian Institute of Marine Science) (2020) Annual Summary Report on coral reef condition for 2019/2020. Initial recovery of the Great Barrier Reef threatened by the third mass bleaching event in five years. Townsville, Australia
2. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471. https://doi.org/10.1016/j.ecss.2008.09.003
3. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285. https://doi.org/10.1046/j.1461-0248.2003.00432.x
4. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833. https://doi.org/10.1038/nature02691
5. Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at Risk Revisited. World Resources Institute, The Nature Conservancy, WorldFish Center, International Coral Reef Action Network, UNEP World Conservation Monitoring Centre and Global Coral Reef Monitoring Network, Washington D.C.
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献