Bioavailability and speciation of Cadmium in contaminated paddy soil as alleviated by biochar from co-pyrolysis of peanut shells and maize straw

Author:

Xu Weijie,Xiao Linlin,Hou Shuzhen,Rukh Gul,Xu Meizhen,Pan Yatian,Xu Jingweng,Lan Wangkaining,Ruan Zhongqiang,Zhong Bing,Liu Dan

Abstract

Abstract Background Biochar is an important material for remediation of Cd in contaminated paddy soils. However, different biochars have variable effects on bioavailability of Cd while single biochar cannot properly amend immobilized Cd. Co-production of biochar from peanut shells and maize straw at different mass mixing ratios (1:0, 1:1, 1:2, 1:3). The characteristics, properties and effects of co-pyrolysis biochars on amendments of Cd polluted paddy soil was evaluated. Results Our research revealed that yield, ash, elemental contents and specific surface area of co-pyrolysis biochars have variable amendment effects compared with single biochar. The co-pyrolysis biochars have produced rich oxygen-containing functional groups and crystal structure, especially 1P3M (co-pyrolysis biochar produced from peanut shell and maize straw in mass ratios of 1:3). The addition of biochar has significantly enhanced pH and EC value, however, content of available Cd during incubation was significantly reduced compared with control treatment. The efficiency of biochars have reduced available Cd in order of 1P3M > M > 1P1M > 1P2M > 2P1M > 3P1M > P after incubation. The 1P3M was most effective in reducing CaCl2-extractable Cd concentration up to 43.97%. The BCR sequential extraction method has produced lowest exchangeable fraction Cd content and highest residual fraction Cd content in 1P3M among all biochar amended treatments. Conclusions It is concluded that 1P3M has a much greater potential to decreased the bioavailability of Cd in contaminated paddy soil. And 1P3M was highly effective for transporting Cd from soluble form to less toxic stable forms in polluted paddy soils. Graphical Abstract

Funder

the Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3