Author:
Xu Weijie,Xiao Linlin,Hou Shuzhen,Rukh Gul,Xu Meizhen,Pan Yatian,Xu Jingweng,Lan Wangkaining,Ruan Zhongqiang,Zhong Bing,Liu Dan
Abstract
Abstract
Background
Biochar is an important material for remediation of Cd in contaminated paddy soils. However, different biochars have variable effects on bioavailability of Cd while single biochar cannot properly amend immobilized Cd. Co-production of biochar from peanut shells and maize straw at different mass mixing ratios (1:0, 1:1, 1:2, 1:3). The characteristics, properties and effects of co-pyrolysis biochars on amendments of Cd polluted paddy soil was evaluated.
Results
Our research revealed that yield, ash, elemental contents and specific surface area of co-pyrolysis biochars have variable amendment effects compared with single biochar. The co-pyrolysis biochars have produced rich oxygen-containing functional groups and crystal structure, especially 1P3M (co-pyrolysis biochar produced from peanut shell and maize straw in mass ratios of 1:3). The addition of biochar has significantly enhanced pH and EC value, however, content of available Cd during incubation was significantly reduced compared with control treatment. The efficiency of biochars have reduced available Cd in order of 1P3M > M > 1P1M > 1P2M > 2P1M > 3P1M > P after incubation. The 1P3M was most effective in reducing CaCl2-extractable Cd concentration up to 43.97%. The BCR sequential extraction method has produced lowest exchangeable fraction Cd content and highest residual fraction Cd content in 1P3M among all biochar amended treatments.
Conclusions
It is concluded that 1P3M has a much greater potential to decreased the bioavailability of Cd in contaminated paddy soil. And 1P3M was highly effective for transporting Cd from soluble form to less toxic stable forms in polluted paddy soils.
Graphical Abstract
Funder
the Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献