Bioaccumulation assessment of nanomaterials using freshwater invertebrate species

Author:

Kuehr Sebastian,Kosfeld Verena,Schlechtriem ChristianORCID

Abstract

Abstract Background The high production volume of engineered nanomaterials (ENMs) may lead to high pressure on the environment, and a scientific assessment of ENMs that bioaccumulate in organisms and biomagnify in the food web is necessary. Within the regulation of chemicals in several jurisdictions, such as the European regulation REACH, the bioconcentration factor is the standard endpoint. The bioconcentration factor is mostly determined by flow-through fish tests. However, nanomaterials tend to agglomerate, which may lead to sedimentation in aquatic environments. The bioavailability of the tested nanomaterials may be thus impaired for pelagic species, including fish, in comparison to benthic or filtrating species. Several risk assessment regulations allow the usage of data gained during tests using invertebrates and such data may allow a waiver of further tests using vertebrates. The aim of this study was to elucidate the potential of different freshwater invertebrate species to be used in laboratory bioaccumulation studies on ENMs and to give some guidance for the use of bioaccumulation endpoints derived from studies using aquatic invertebrate species in the risk assessment process for ENMs. Results The existing literature related to the testing of nanomaterial bioaccumulation with freshwater invertebrates was screened and reviewed to find suitable test species with regard to their ecology and physiology, as well as laboratory test systems allowing to investigate the bioavailability/bioaccumulation of nanomaterials with the respective species. Bivalvia, gastropoda, isopoda, amphipoda, and branchiopoda were reviewed and their suitability for bioaccumulation testing was assessed. Amphipods and bivalves represent worst-case scenarios and show clear advantages to be used as test organisms. However, only amphipods allow the examination of two clearly independent exposure pathways (water and diet). Conclusion Amphipods are suitable test organisms for bioaccumulation testing of ENMs. The results from amphipod bioconcentration and biomagnification tests can be included in a tiered assessment suggested at the end of this study allowing a clear grading of the tested nanomaterials as “bioaccumulative” or “non bioaccumulative.” Due to the worst-case scenario of the amphipod test, this approach may allow a waiver of further vertebrate tests.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference438 articles.

1. ECHA. Guidance on information requirements and chemical safety assessment chapter R.11: PBT/vPvB assessment. Eur Chem Agency 4:494, 2017, https://doi.org/10.2823/128621.

2. Ministry of Environment and Urbanization (MoEU) of Turkey (2017) Draft by-law on registration, evaluation, authorization and restriction of chemicals. http://files.chemicalwatch.com/KKDİKingilizce.pdf. Accessed 4 Jan 2018

3. USEPA (2004) High Production Volume Challenge Program. vol. C. www.epa.gov. Accessed 4 Jan 2018

4. Korea Ministry of Government Legislation (1997) Korean Laws in English - Toxic Chemicals Control Act. http://www.moleg.go.kr/english/korLawEng?pstSeq=47535. Accessed 4 Jan 2018

5. Organisation for Economic Co-operation and Development (OECD) (2012) Test No. 305: Bioaccumulation in fish: aqueous and dietary exposure. OECD Guidel. Test. Chem. Paris

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3