Energy efficiency trade-offs in small to large electric vehicles

Author:

Weiss Martin,Cloos Kira Christina,Helmers EckardORCID

Abstract

Abstract Background As electric kick scooters, three-wheelers, and passenger cars enter the streets, efficiency trade-offs across vehicle types gain practical relevance for consumers and policy makers. Here, we compile a comprehensive dataset of 428 electric vehicles, including seven vehicle types and information on certified and real-world energy consumption. Regression analysis is applied to quantify trade-offs between energy consumption and other vehicle attributes. Results Certified and real-world energy consumption of electric vehicles increase by 60% and 40%, respectively, with each doubling of vehicle mass, but only by 5% with each doubling of rated motor power. These findings hold roughly also for passenger cars whose energy consumption tends to increase 0.6 ± 0.1 kWh/100 km with each 100 kg of vehicle mass. Battery capacity and vehicle mass are closely related. A 10 kWh increase in battery capacity increases the mass of electric cars by 15 kg, their drive range by 40–50 km, and their energy consumption by 0.7–1.0 kWh/100 km. Mass-produced state-of-the-art electric passenger cars are 2.1 ± 0.8 kWh/100 km more efficient than first-generation vehicles, produced at small scale. Conclusion Efficiency trade-offs in electric vehicles differ from those in conventional cars—the latter showing a strong dependency of fuel consumption on rated engine power. Mass-related efficiency trade-offs in electric vehicles are large and could be tapped by stimulating mode shift from passenger cars to light electric road vehicles. Electric passenger cars still offer potentials for further efficiency improvements. These could be exploited through a dedicated energy label with battery capacity as utility parameter.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference54 articles.

1. Briec E, Mazal C, Meyer G, Müller B (2012) European roadmap—electrification of road transport. 2nd edn, European Green Vehicles Initiative. https://egvi.eu/wp-content/uploads/2018/01/electrification_roadmap_web.pdf. Accessed 29 May 2019

2. EC (2017) Electrification of the transport system—studies and reports. EC—European Commission. https://ec.europa.eu/newsroom/horizon2020/document.cfm?%20doc_id=46368. Accessed 29 May 2019

3. IEA (2018) Global EV outlook 2018. IEA—International Energy Agency. https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/globalevoutlook2018.pdf. Accessed 29 May 2019

4. McKinsey (2014) Electric vehicles in Europe: gearing up for a new phase. https://www.mckinsey.com/~/media/McKinsey/Locations/Europe%20and%20Middle%20East/Netherlands/Our%20Insights/Electric%20vehicles%20in%20Europe%20Gearing%20up%20for%20a%20new%20phase/Electric%20vehicles%20in%20Europe%20Gearing%20up%20for%20a%20new%20phase.ashx. Accessed 18 July 2019

5. EC (2017) 2017—EU transport in figures. Statistical pocketbook. EC—European Commission, Eurostat. https://ec.europa.eu/transport/sites/transport/files/pocketbook2017.pdf. Accessed 26 June 2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3