Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation - results of 10 years of monitoring (2001 to 2010)

Author:

Hofmann Frieder,Otto Mathias,Wosniok Werner

Abstract

Abstract Background Information on pollen dispersal is essential for the risk assessment and management of genetically modified organisms (GMOs) such as Bt maize. We analyzed data on maize pollen deposition at 216 sites in Germany, Switzerland, and Belgium from 2001 to 2010. All data were collected using the same standardized sampling method. The distances between sampling site and the nearest maize field ranged from within the field to 4.45 km. Results Maize pollen deposition was negatively correlated with distance from the nearest pollen source. The highest pollen deposition was within the field, but depositions of several thousand pollen grains per square meter were recorded over the kilometer range. A power function model most accurately described the relationship between deposition and distance from the nearest pollen source, rather than the exponential model currently used in EU risk assessment and management, which underestimates exposure for distances greater than 10 m. Regression analysis confirmed the high significance of the power relationship. The large variation in pollen deposition at a given distance reflected the influences of wind direction and other meteorological and site conditions. Plausible variations of single values and the predicted mean pollen count at a given distance were expressed by confidence intervals. Conclusions The model described here allows estimations of pollen deposition in relation to distance from the nearest field; therefore, it will be valuable for the risk assessment and management of GMOs. Our results indicate that buffer zones in the kilometer range are required to prevent harmful exposure of non-target organisms to GMOs.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference88 articles.

1. den Nijs HCM, Bartsch D, Sweet J: Introgression from genetically modified plants into wild relatives. CABI Publishing, Wallingford; 2004.

2. Ellstrand NC, Prentice HC, Hancock JF: Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 1999, 30: 539–563. 10.1146/annurev.ecolsys.30.1.539

3. Stewart CN, Halfhill MD, Warwick SI: Transgene introgression from genetically modified crops to their wild relatives. Nature 2003, 4: 806–817.

4. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed Off J Eur Union L 2003, 268: 1–23.

5. Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC Off J Eur Union L 2003, 268: 24–28.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3