Author:
Koller Franziska,Schulz Meike,Juhas Matthias,Bauer-Panskus Andreas,Then Christoph
Abstract
Abstract
Background
New genomic techniques (NGTs) allow new genotypes and traits to be developed in different ways and with different outcomes compared to previous genetic engineering methods or conventional breeding (including non-targeted mutagenesis). EU GMO regulation requires an assessment of their direct and indirect effects that may be immediate, delayed or cumulative. Such effects may also result from the interactions of NGT organisms simultaneously present in a shared receiving environment or emerge from a combination of their traits. This review elaborates such potential interactions based on a literature review and reasoned scenarios to identify possible pathways to harm.
Main findings
NGT organisms might be introduced into the environment and food chains on a large-scale, involving many traits, across a broad range of species and within short periods of time. Unavoidably, this would increase the likelihood that direct or indirect effects will occur through interactions between NGT organisms that are, for example simultaneously present within a shared environment. It has to be assumed that the cumulative effects of these NGT organisms may exceed the sum of risks identified in the distinct ‘events’. Consequently, risk assessors and risk managers not only need to consider the risks associated with individual NGT organisms (‘events’), but should also take account of risks resulting from their potential interactions and combinatorial effects. In addition, a prospective technology assessment could help the risk manager in defining criteria to minimize potential unintended interactions between NGT organisms through limiting the scale of releases.
Conclusions
If genetically engineered (GE) organisms derived from NGTs are released into the environment, their potentially negative impacts need to be minimized. As with all GE organisms, it is, therefore, crucial to not only assess the risks of the individual events, but also their potential interactions which can trigger direct and indirect effects with adverse impacts. It is necessary to develop hypotheses and specific scenarios to explore interactions between NGT organisms and possible pathways to harm from the perspective of the precautionary principle. In addition, the introduction prospective technology assessment could provide an instrument for the risk manager to control the scale of releases of NGT organisms.
Funder
Bundesamt für Naturschutz
Publisher
Springer Science and Business Media LLC
Reference114 articles.
1. European Parliament, Council of the European Union (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC—Commission Declaration
2. European Commission (2018) Commission Directive
3. (EU) 2018/350 of 8 March 2018 amending Directive 2001/18/EC of the European Parliament and of the Council as regards the environmental risk assessment of genetically modified organisms
4. European Commission (2013) Commission Implementing Regulation (EU) No 503/2013 of 3 April 2013 on applications for authorisation of genetically modified food and feed in accordance with Regulation (EC) No 1829/2003 of the European Parliament and of the Council and amending Commission Regulations (EC) No 641/2004 and (EC) No 1981/2006 Text with EEA relevance
5. EFSA Panel on Genetically Modified Organisms (GMO) (2010) Guidance on the environmental risk assessment of genetically modified plants. EFSA J 8:1879. https://doi.org/10.2903/j.efsa.2010.1879
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献