New strategy based on Hammerstein–Wiener and supervised machine learning for identification of treated wastewater salinization in Al-Hassa region, Saudi Arabia

Author:

Shah Syed Muzzamil Hussain,Abba Sani I.,Yassin Mohamed A.,Lawal Dahiru U.,Aliyu Farouq,Al-Qadami Ebrahim Hamid Hussein,Qureshi Haris U.,Aljundi Isam H.,Asmaly Hamza A.,Sammen Saad Sh.,Scholz Miklas

Abstract

AbstractThe agricultural sector faces challenges in managing water resources efficiently, particularly in arid regions dealing with water scarcity. To overcome water stress, treated wastewater (TWW) is increasingly utilized for irrigation purpose to conserve available freshwater resources. There are several critical aspects affecting the suitability of TWW for irrigation including salinity which can have detrimental effects on crop yield and soil health. Therefore, this study aimed to develop a novel approach for TWW salinity prediction using artificial intelligent (AI) ensembled machine learning approach. In this regard, several water quality parameters of the TWW samples were collected through field investigation from the irrigation zones in Al-Hassa, Saudi Arabia, which were later assessed in the lab. The assessment involved measuring Temperature (T), pH, Oxidation Reduction Potential (ORP), Electrical Conductivity (EC), Total Dissolved Solids (TDS), and Salinity, through an Internet of Things (IoT) based system integrated with a real-time monitoring and a multiprobe device. Based on the descriptive statistics of the data and correlation obtained through the Pearson matrix, the models were formed for predicting salinity by using the Hammerstein-Wiener Model (HWM) and Support Vector Regression (SVR). The models’ performance was evaluated using several statistical indices including correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), and root mean square error (RMSE). The results revealed that the HWM-M3 model with its superior predictive capabilities achieved the best performance, with R2 values of 82% and 77% in both training and testing stages. This study demonstrates the effectiveness of AI-ensembled machine learning approach for accurate TWW salinity prediction, promoting the safe and efficient utilization of TWW for irrigation in water-stressed regions. The findings contribute to a growing body of research exploring AI applications for sustainable water management.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3