Polycyclic aromatic hydrocarbon exposure during pregnancy and changes in umbilical renal function

Author:

Hsu Chou-Yi,Liu Cong,Morozova Natalia S.,Hussain Shaik Althaf,Kumar Ashwani,Mohammed Jaafaru Sani,Pramanik Atreyi,Juraev Nizomiddin,Ali Saad Hayif Jasim,Najafi Moslem Lari

Abstract

AbstractPolycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants with significant adverse effects on human health, particularly concerning fetal development during pregnancy. This study investigates the relationship between maternal exposure to particulate matter-bound (PM-bound) PAHs and potential alterations in fetal renal function. A cross-sectional investigation was conducted on 450 mother-pair newborns from June 2019 to August 2021. Exposure to PM-bound PAHs was estimated at the residential address using spatiotemporal models based on data from 30 monitoring stations across the study area. Umbilical cord blood samples were collected post-delivery for biochemical analysis of renal function markers, including creatinine (Cr), blood urea nitrogen (BUN), and estimated glomerular filtration rate (eGFR). Multivariable regression models were used to assess the relationship between exposure to each PAHs compound and fetal renal function. Moreover, the mixture effects of exposure to PAHs on fetal renal function were assessed using quantile g-computation analysis. Increased concentrations of various PAH compounds at the residential address correlated with raised levels of umbilical BUN and Cr, suggesting potential renal impairment. Notably, exposure to certain PAHs compounds demonstrated statistically negative significant associations with eGFR levels. An increment of one quartile in exposure to PAHs mixture was correlated with a rise of 1.08 mg/dL (95% CI 0.04, 2.11, p = 0.04) and 0.02 mg/dL (95% CI − 0.00, 0.05, p = 0.05) increase in BUN and Cr, respectively. Moreover, a one-quartile increase in PAHs mixture exposure was associated with − 1.09 mL/min/1.73 m2 (95% CI − 2.03, − 0.14, p = 0.02) decrease in eGFR. These findings highlight the potential impact of PAH exposure on fetal renal function and underscore the importance of considering environmental exposures in assessing neonatal renal health outcomes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3