Impact of wastewater treatment plants on microbiological contamination for evaluating the risks of wastewater reuse

Author:

Bonetta Silvia,Pignata Cristina,Gasparro Elisa,Richiardi Lisa,Bonetta SaraORCID,Carraro Elisabetta

Abstract

Abstract Background Wastewater reuse represents a promising alternative source of water supply considering the water scarcity related to climate change. However, if not adequately treated, wastewater represents a source of microbiological health risk. The purpose of this work was to investigate the role of wastewater treatment on microbiological contamination by evaluating the possible risks associated with wastewater effluent reuse, taking into account new EU legislation (2020/741) on minimum requirements for water reuse. E. coli that produce Shiga toxins (STEC) and thermotolerant Campylobacter were monitored using an enrichment step associated with specific PCR, while Salmonella spp. and Legionella were detected with both cultural and molecular methods (PCR and q-PCR, respectively). Culture method was also used for the enumeration of different microbial indicators. The bacteria detection was compared in different wastewater plants with membrane bioreactor (MBR) system or with disinfection step with chlorine dioxide (ClO2). Moreover a comparison between molecular and culture methods was discussed. Results The results obtained showed good abatement performance for WWTPs equipped with MBR. The high concentrations of E. coli (range between 0.88 and 5.21 Log MPN/100 mL) and contamination by Salmonella spp. in effluent disinfected with ClO2 (17% of samples) showed the need to control the quality of this effluent. In addition, despite the absence of Legionella spp. with the culture method required by EU regulation, high concentrations of Legionella spp. (range between 2 and 7 log GU/L) and the presence of Leg. pneumophila with qPCR (15% of samples) highlight the need to carry out further investigations for reuse associated with aerosol formation (e.g. spray irrigation in agriculture). Conclusions The results obtained underline that the MBR technology can be suitable for wastewater reuse applications allowing to achieve the requirement proposed by the new European legislation. More attention should be given to wastewater reuse of effluents treated with ClO2. The use of the molecular methods for pathogens detection in wastewater could allow a more precautionary risks estimation associated with reuse. The overall results highlight that an evaluation of the effectiveness of the wastewater treatments is required for the prevention of a possible risk to public health.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference41 articles.

1. UNESCO (2020) UN-Water, 2020: United Nations World Water Development Report 2020: water and climate change. UNESCO, Paris

2. L. Alcalde Sanz, B (2014) Gawlik, Water Reuse in Europe - Relevant guidelines, needs for and barriers to innovation. EUR 26947. Luxembourg (Luxembourg): Publications Office of the European Union. JRC92582

3. EU 2016. EU-level instruments on water reuse. Final report to support the Commission’s Impact Assessment. Prepared by Amec Foster Wheeler Environment & Infrastructure UK Ltd, IEEP, ACTeon, IMDEA and NTUA. Luxembourg: Publications Office of the European Union, 2016. ISBN 978–92–79–62616–6

4. EU 2020. REGULATION (EU) 2020/741 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 May 2020 on minimum requirements for water reuse

5. Farhadkhani M, Nikaeen M, Hadi M, Gholipour S, G, (2020) Yadegarfar, Campylobacter risk for the consumers of wastewater-irrigated vegetable based on field experiments. Chemosphere 251:126408

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3