Validating the map of current semi-natural ecosystem types in Germany and their upscaling using the Kellerwald-Edersee National Park as an example

Author:

Nickel StefanORCID,Schröder Winfried,Völksen Barbara

Abstract

Abstract Background Implementation Action 5 of the EU Biodiversity Strategy to 2020 includes that Member States map and assess the state of ecosystems and their services in their national territory. A fundamental component of the respective methodology developed in Germany is the classification of semi-natural ecosystems. In this context, this study aims to examine the quality and re-usability of the map of current semi-natural ecosystem types (cEsT) in Germany (1: 500,000; Jenssen et al. in Forschungsvorhaben 3710 83 214, UBA-FB 001834. UBA-Texte 87/2013. Dessau, Textband + 9 Anhänge, 381 S, 2013; Schröder et al. in Sci Total Environ 521–522:108–122, 2015, in Abschlussbericht Forschungsvorhaben UFOPLAN 3713 83 254 im Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Bd. 1:1–493 + 7 Anhänge, Bd. 2:1–343, Bd. 3:1–303. Dessau, 2018]) as well as the cEsT map of the Kellerwald National Park (1: 25,000). Results Based on DIN EN ISO 19113 and (DDGI in Qualitätsmodell für die Beschreibung von Geodaten (PAS 1071:2007-10), Beuth Verlag, Berlin, 14 S. + Anh, 2007), the positional accuracy (absolute positional accuracy) and thematic accuracy (classification correctness) were quantitatively determined. For this purpose, a comparison was made with geometrical data of well-known positional accuracy such as ATKIS-DLM (Hesse), mapping of biotopes and habitat types (Hesse, Germany), current vegetation surveys from the Kellerwald National Park (Hesse; permanent random sample inspection, own survey) as well as vegetation surveys available Germany-wide after 1990 from the database of the Institute of Forestry Eberswalde (Waldkunde-Institut Eberswalde; W.I.E.). The map of cEsT Germany has an absolute positional accuracy of ± 42.29 m (≈ ± 42 m) and has been classified correctly by about 30%. Another approximately 35% are ecologically similar to the existing forest ecosystem types (together 65%). In a further approximately 15%, the ecosystem types were correctly classified, but only occur as accompanying ecosystem types. About 15% occurred as an ecologically related accompanying ecosystem type (together 30%). 5% of the spatial objects were mapped incorrectly. In the Kellerwald National Park (1: 25,000), about 22% of the cEsT were classified correctly. Misclassifications on both scale levels concerned the assignments to the elevation levels (e.g., Eb-5n-C2 instead of D1-5n-C2) and, respectively, to the humus species (e.g., Eb-5n-D1 instead of Eb-5n-D1a). The main reason for misclassifications can be seen in high thematic differentiation of the ecosystem classification according to Jenssen et al. (2013). The biotope and habitat mappings are, due to their generally lower thematic differentiation, more appropriate for a falsification than for a verification of the cEsT approach. However, the spatial information content is valuable for comparisons with regard to the occurrence of cEsT as the main or concomitant ecosystem type. Conclusions The correctness of the classification can best be verified by vegetation samplings, but only at the site level. Any deviations found could then be used to improve the quality of the cEsT mapping, particularly at the regional level (1:5000 to 1:25,000). In principle, the use of the identification key for forest and forest ecosystem types (Schröder et al. 2018, vol. 3) is recommended for mapping on a regional scale.

Funder

Umweltbundesamt

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference22 articles.

1. AG Boden - Arbeitsgruppe Boden (2005) Bodenkundliche Kartieranleitung, 5th edn. Bundesanstalt für Geowissenschaf-ten und Rohstoffe und den Geologischen Landesämtern der Bundesrepublik Deutschland (Hrsg.), Hannover

2. BfN (Bundesamt für Naturschutz; Hrsg.) (2010) Karte der Potenziellen Natürlichen Vegetation Deutschland, M 1:500.000. Bonn-Bad Godesberg, 24 S. Legende + 7 Karten

3. CLC (2006) Karte der Bodenbedeckung, CORINE Land Cover 2006. https://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2/clc-2006-100m/g100_06.zip/at_download/file/g100_06.zip. Accessed 10 July 2019

4. DDGI (2007) Qualitätsmodell für die Beschreibung von Geodaten (PAS 1071:2007-10). Beuth Verlag: Berlin, 14 S. + Anh

5. Friedrichs J (1990) Methoden empirischer Sozialforschung, 14th edn. Westdeutscher Verlag, Opladen, p 430

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3