Distribution of antibiotic-resistant bacteria in aerobic composting of swine manure with different antibiotics

Author:

Song Tingting,Li Hongna,Li Binxu,Yang Jiaxun,Sardar Muhammad Fahad,Yan Mengmeng,Li Luyao,Tian Yunlong,Xue Sha,Zhu ChangxiongORCID

Abstract

Abstract Background Livestock manure is an important reservoir of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). The bacterial community structure and diversity are usually studied using high-throughput sequencing that cannot provide direct evidence for ARB changes. Thus, little is known about the distribution of ARB, especially in the presence of different antibiotics in composting process. In this study, the fate of ARB was investigated in aerobic composting of swine manure, using chlortetracycline, sulfamethoxazole, lincomycin, and ciprofloxacin as typical antibiotics. The abundance and species of ARB were analyzed systematically to evaluate their ecological risk at different stages of composting. Results The absolute abundance of total ARB decreased, while the relative abundance increased on day 2. The relative abundance of lincomycin-resistant bacteria was higher than other ARBs during the whole composting process. The absolute abundance of four ARBs was 9.42 × 106–2.51 × 102 CFU/g (lincomycin- > chlortetracycline- > sulfamethoxazole- > ciprofloxacin- > multiple antibiotic-resistant bacteria), and they were not completely inactivated at the end of composting. Antibiotics led to a partial proliferation of ARBs including Corynebacterium, Sporosarcina, Solibacillus, and Acinetobacter. Especially, Corynebacterium, a pathogenic genus, was observed in chlortetracycline and lincomycin treatments. Conclusion Among the antibiotics studied, lincomycin showed the highest ecological risk, due to it expanded the range of lincomycin-resistant bacteria at the phyla level (Firmicutes, Actinobacteria, and Proteobacteria). The principal co-ordinates analysis indicated that the bacterial community structure was primarily associated with the composting stages rather than antibiotic types. Possible potential hosts and the related to the decrease of ARGs abundance were indicated based on the network analysis. The decrease of culturable Proteobacteria and the increase of culturable Firmicutes (Solibacillus, Bacillus) partially explained the high degradation rate of various ARGs with the progress of composting in this study. These results provided important information for the control of antibiotic resistance in composting.

Funder

the National Water Pollution Control and Treatment Science and Technology Major Project in China

the Natural Science Foundation of Beijing, China

the Young Elite Scientist Sponsorship Program by CAST

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3