Insufficient risk assessment of herbicide-tolerant genetically engineered soybeans intended for import into the EU

Author:

Miyazaki Juliana,Bauer-Panskus Andreas,Bøhn Thomas,Reichenbecher Wolfram,Then Christoph

Abstract

AbstractThe introduction of herbicide-tolerant (HT) genetically engineered (GE) soybeans has raised new challenges for the European risk assessment of imported food and feed. Food and feed products derived from these plants may show specific patterns of chemical residues and altered nutritional composition. Furthermore, there has been a substantial increase in the usage of herbicides in soybean production due to the emergence of resistant weeds. This concerns particular glyphosate-based herbicides and also other herbicides. In this review, we give an overview of available data regarding glyphosate application on HT GE soybeans in North and South America. We have further compared this data with herbicide applications in experimental field trials conducted by the industry. We conclude that field trials carried out for risk assessment purposes do not generally represent the real agronomic conditions in commercial HT GE plant cultivation. In most cases, neither the applied dose nor the number of applications match real conditions. This finding is especially relevant for risk assessment since a review of relevant publications shows that the amount and timing of spraying glyphosate as a complementary herbicide onto HT GE plants can impact their composition; this is relevant to EFSA comparative risk assessment of GMOs. Further, closely related issues were identified that overlap with EU GMO and pesticide regulation, but are not currently considered. These issues concern indirect, cumulative and combinatorial effects as well as the assessment of mixed toxicity. Consequently, current risk assessment practice for HT GE plants cannot be considered to fulfil EU regulatory standards which require the safety of food and feed to be demonstrated. It is much more likely that concerns about the health risks of HT GE plant material used for food and feed have been underestimated. We therefore conclude that the EU risk assessment of food and feed derived from HT GE plants needs substantial improvement.

Funder

Stiftung Mercator Schweiz

Manfred Hermsen Stiftung

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference125 articles.

1. EU Commission (2016) Genetically modified commodities in the EU, SWD (2016) 61 final, commission staff working document, Brussels. https://ec.europa.eu/transparency/regdoc/rep/10102/2016/EN/10102-2016-61-EN-F1-1.PDF. Accessed 18 Sept 2019

2. EU Commission (2019) EU crops market observatory—oilseeds and protein crops. https://circabc.europa.eu/sd/a/4d9aeffa-bca9-49a3-b3d3-28ca1a4e7520/oilseeds-monthly_trade-eurostat_en.xlsx. Accessed 18 Sept 2019

3. Testbiotech PlantGeneRisk—database on the authorisation of genetically engineered plants in the European Union. https://www.testbiotech.org/database. Accessed 18 Sept 2019

4. Pengue WA (2005) Transgenic crops in Argentina: the ecological and social debt. Bull Sci Technol Soc 25(4):314–322. https://doi.org/10.1177/0270467605277290

5. Sankula S, Marmon G, Blumenthal E (2005) Biotechnology-derived crops planted in 2004: impacts on US agriculture. National Center for Food and Agricultural Policy, Washington, DC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3