Europe-wide spatial trends in copper and imidacloprid sensitivity of macroinvertebrate assemblages

Author:

Jupke Jonathan F.,Sinclair Thomas,Maltby Lorraine,Aroviita Jukka,Barešová Libuše,Bonada Núria,Elexová Emília Mišíková,Ferreira M. Teresa,Lazaridou Maria,Lešťáková Margita,Panek Piotr,Pařil Petr,Peeters Edwin T. H. M.,Polášek Marek,Sandin Leonard,Schmera Dénes,Straka Michal,Schäfer Ralf B.

Abstract

AbstractExposure to synthetic chemicals, such as pesticides and pharmaceuticals, affects freshwater communities at broad spatial scales. This risk is commonly managed in a prospective environmental risk assessment (ERA). Relying on generic methods, a few standard test organisms, and safety factors to account for uncertainty, ERA determines concentrations that are assumed to pose low risks to ecosystems. Currently, this procedure neglects potential variation in assemblage sensitivity among ecosystem types and recommends a single low-risk concentration for each compound. Whether systematic differences in assemblage sensitivity among ecosystem types exist or their size, are currently unknown. Elucidating spatial patterns in sensitivity to chemicals could therefore enhance ERA precision and narrow a fundamental knowledge gap in ecology, the Hutchinsonian shortfall. We analyzed whether taxonomic turnover between field-sampled macroinvertebrate assemblages of different broad river types across Europe results in systematic differences in assemblage sensitivity to copper and imidacloprid. We used an extensive database of macroinvertebrate assemblage compositions throughout Europe and employed a hierarchical species sensitivity distribution model to predict the concentration that would be harmful to 5% of taxa (HC5) in each assemblage. Predicted $$H{C}_{5}$$ H C 5 values varied over several orders of magnitude. However, variation within the 95% highest density intervals remained within one order of magnitude. Differences between the river types were minor for imidacloprid and only slightly higher for copper. The largest difference between river-type-specific median $$H{C}_{5}$$ H C 5 values was a factor of 3.1. This level of variation is below the assessment factors recommended by the European Food Safety Authority and therefore would be captured in the current ERA for plant protection products. We conclude that the differences in taxonomic composition between broad river types translate into relatively small differences in macroinvertebrate assemblage sensitivity toward the evaluated chemicals at the European scale. However, systematic differences in bioavailability and multi-stressor context were not evaluated and might exacerbate the differences in the ecological effects of chemicals among broad river types in real-world ecosystems.

Funder

European Chemical Industry Council

SYKE

PERUN Competence Centre

Universitat de Barcelona

VUVH /WRI

Cohesion fund of EU

Forest Research Centre and Associate Laboratory TERRA

Aristotle University of Thessaloniki, Greece

Główny Inspektorat Ochrony Środowiska

Czech Science Foundation

Technology Agency of the Czech Republic

Wageningen University and Research

Norwegian Institute for Nature Research

Széchenyi Plan Plus program

Hungarian Academy of Sciences

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3