Management of agricultural waste biomass as raw material for the construction sector: an analysis of sustainable and circular alternatives

Author:

Duque-Acevedo Mónica,Lancellotti Isabella,Andreola Fernanda,Barbieri Luisa,Belmonte-Ureña Luis J.,Camacho-Ferre Francisco

Abstract

Abstract Background The agricultural and construction sectors demand enormous amounts of natural resources and generate environmental impacts that negatively affect ecosystems. One of the main problems is the generation and inadequate management of waste. For this reason, under the approaches of the new sustainable and circular models, waste valorization has been prioritised as a strategy for advancing towards the sustainability of production systems. This research aims to carry out a general analysis of Agricultural Waste Biomass (AWB) in the production of bio-based products for the construction sector. Bibliometric techniques were applied for the general analysis of the scientific production obtained from Scopus. A systematic review identified the main research approaches. In addition, European projects were reviewed to assess the practical application. This study is novel and provides relevant contributions to new trends in the valorisation of AWB in the building sector and the sustainability benefits. For policymakers, it is a source of information on the contribution of new policies to scientific advances and the aspects that need to be strengthened to improve sustainable and circular practices in both sectors. Results The results show that 74% of the research has been published within the last 5 years. Regarding the main types of AWBs, rice husk ash and sugar cane bagasse ash are the most commonly used in manufacturing a wide variety of bio-based building products. Cement, concrete and bricks are the main bio-based products obtained from AWB. However, a new approach to utilisation was identified in road construction. Conclusions The findings indicate that the AWB is an important resource with great potential for the construction sector. Similarly, that policies on sustainable and circular development have driven scientific progress on new alternatives for the valorisation of AWB to improve sustainability in the construction sector. Although the practical application has also been driven through European projects, development at this level is still low. Therefore, it is necessary to strengthen partnerships between these two sectors and improve government strategies on sustainability and circularity to overcome existing constraints.

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference134 articles.

1. European Comission (2022) COM(2022) 144 final. Proposal for a Regulation of the European Parliament and of the Council laying down harmonised conditions for the marketing of construction products, amending Regulation (EU) 2019/1020 and repealing Regulation (EU) 305/2011. European Comission, Brussels, Belgium

2. FAO (2021) The State of Food and Agriculture 2021. Making agrifood systems more resilient to shocks and stresses. FAO, Rome, Italy

3. Intergovernmental Panel on Climate Change (2021) Summary for policymakers in climate change the physical science basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. University Press, Cambridge

4. Commission E (2018) A sustainable Bioeconomy for Europe: strengthening the connection between economy, society and the environment. Publications Office of the European Union, Brussels, Belgium, Updated Bioeconomy Strategy

5. Jannat N, Hussien A, Abdullah B, Cotgrave A (2020) Application of agro and non-agro waste materials for unfired earth blocks construction: a review. Constr Build Mater 254:119346. https://doi.org/10.1016/j.conbuildmat.2020.119346

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3