Dilution or enrichment: the effects of flood on pollutants in urban rivers

Author:

Zhou Min,Wu Siqi,Zhang Zhaolin,Aihemaiti Yuemaierjiang,Yang Liu,Shao YingORCID,Chen Zhongli,Jiang Yanxue,Jin Chao,Zheng Guocan

Abstract

Abstract Background Flood events increase the risk of sediment erosion and hence the release of particle-bound pollutants besides other processes that can be observed during such events like transportation, lateral distribution and other. Macropollutants, such as acids, salts, nutrients, and natural organic matter, are usually diluted by flooding, while the effect of floods on micropollutants is still unclear. To fill this gap, Qingshui Stream, a tributary of the Jialing River in the city of Chongqing that suffered 75,000 m3·s−1 flood in August 2020 was selected in the current study to clarify effects of flood-induced pollution transportation. 14 surface water samples and 14 sediment samples were collected to analyze the occurrence of micropollutants (including 21 organochlorine pesticides (OCPs), 34 organophosphorus pesticides (OPPs) and 3 estrogenic compounds) before, during and after the flood. Finally, the environmental risks were evaluated by risk quotient (RQ). Results The concentrations of total phosphorus (TP), total nitrogen (TN), chemical oxygen demand (COD) in the surface water decreased from upstream to downstream, and the amounts were diluted by flooding from 0.08 to 0.05 mg·L−1 for TP, from 0.06 to 0.02 mg·L−1 for TN and from 132 to 27 mg·L−1 for COD, respectively. The concentration of estrogenic compound was up to 90 ng·g−1, which was reduced to be lower than the limit of detection during flood. Alpha-endosulfan, delta-BHC, mirex, dichlorvos, phosdrin, thionazine, tetraethyl pyrophosphate, diazinon, methyl parathion, malathion, chlorpyrifos, famphur, and EPN were diluted by flooding, i.e., the concentration of delta-BHC reduced from 6.67 to 0.09 ng·g−1; whereas, pp'-DDD, heptachlor epoxide, o,o,o-triethylphosphorothioate, dimethoate, rabon and fensulfothion were enriched after the flood. The environmental risk was observed to be mainly arise from the presence of OPPs, which increased after flooding. The RQ values of OPPs and OCPs increased after the flood, and the potential environmental risk of OPPs accounted for the majority portion of the risk. Conclusions The concentrations of macropollutants in surface water and sediments, and 14 micropollutants in sediments were diluted, while pesticides such as pp′-DDD, heptachlor epoxide, o,o,o-triethylphosphorothioate, dimethoate, rabon and fensulfothion were enriched after the flood. These results suggested management on urban river should focus on potential risk of OPPs. The current study therefore could provide scientific evidence and regulatory reference for urban river ecosystem protection.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Venture and Innovation Support Program for Chongqing Overseas Returnees

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3