Triadimefon in aquatic environments: occurrence, fate, toxicity, and ecological risk

Author:

Hou Lin,Jin XiaoweiORCID,Liu Na,Luo Ying,Yan Zhenfei,Chen Miao,Liu Yang,Xie Huiyu,Giesy John P.,Wu Fengchang,Xu Jian

Abstract

Abstract Background As a triazole fungicide, triadimefon is widely used around the world. The ubiquitous occurrence of triadimefon in aquatic environments and potential adverse effects on aquatic organisms have resulted in global concerns. In this review, the current state of knowledge on occurrence, environmental behavior, and toxic effects are presented and used to conduct an assessment of risks posed by current concentrations of triadimefon in aquatic environments. Results The key findings from this review are that: (1) triadimefon occurred widely in surface waters, with high rates of detection; (2) abiotic degradation of triadimefon was affected by many factors. Stereoselectivity was found during biotic degradation and metabolism of triadimefon. Different enantiomers can cause various adverse effects, which complicates the assessment and requires enantiomers-specific considerations; (3) triadimefon exposure can affect organisms by causing multiple toxic effects on the thyroid, reproductive system, liver, nervous system as well as carcinogenicity and teratogenicity, and it can also act synergistically with other pesticides. Long-term, low-dose effects were considered to be the main characteristics of toxic effects of triadimefon; (4) results of the risk assessment based on probabilistic relationships represented by joint probability curves (JPCs) indicated that risk of triadimefon was classified as low risk. Conclusion Triadimefon occurred widely in surface waters, with high rates of detection, while the concentration data of triadimefon in surface water is insufficient. Researches about toxic effects and mechanisms of triadimefon on invertebrate are needed. Meanwhile, researches about toxic effects and environmental exposure of chiral monomers are also required. Due to its reproductive toxicity, triadimefon might result in adverse effects on the population level or even on the ecosystem level. Risk assessments for pesticides that cause long-term and low-dose effects on aquatic organisms such as triadimefon need to consider higher-level ecological risk.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Reference99 articles.

1. Zhou ZY, Li CC, Gao TC, Tan GJ (2008) Research progress of triazole fungicides. J Anhui Agric Sci 36:11842–11844. https://doi.org/10.3969/j.issn.0517-6611.2008.27.099

2. Gao HY (2014) Adsorption of triadimefon in water with cationic-nonionic organobentonite. Water Purif Technol 33:42–45

3. Wei C, Song LJ, Yang WP, Lu TY, Wang P, Yao XM (2016) Detection and feature analysis of organochlorine pesticide pollution in drinking water sources in Guiyang. Environ Sci Technol 39(3):131–135

4. US EPA (2006) Registration eligibility decision for triadimefon and tolerance reassessment for traidmimenol. Washington

5. Liu Y, Yang WP, Wei CH, Lu TY, Song LJ (2015) Pesticide contamination characteristics and health risks of drinking water sources in Guiyang during dry season. Earth Environ 43(6):653–659. https://doi.org/10.14050/j.cnki.1672-9250.2015.06.008

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3