Method development and validation for simultaneous quantification of microcystin congeners in water

Author:

Qiao Xiaocui,Ge Simin,Liu Chengyou,Jiao Lixin,Li Xue,Zhao Xingru,Qi Tong,Liu YanORCID

Abstract

Abstract Background Microcystins (MCs) are secondary metabolites of cyanobacteria that are hepatotoxic to humans through the ingestion of cyanobacteria-contaminated water and accidental inhalation from lake activities. MCs with diverse congeners in water can be precisely quantified using online solid-phase extraction-ultra performance liquid chromatography coupled with tandem mass spectrometry (online-SPE UPLC–MS/MS). A method was developed and validated to simultaneously quantify eight different MCs (microcystin-RR, -LR, -YR, -WR, -LA, -LF, -LY, and -LW) in water using online-SPE UPLC–MS/MS. Results The method achieved the highest efficiency and sensitivity by selecting acetonitrile with 0.1% formic acid and water with 0.1% formic acid as the best mobile phase conditions. The linearity, accuracy, and precision were validated using matrix-mixed water with a leucine enkephalin internal standard. The limit of detection (LOD) was calculated using the signal-to-noise ratio of three passes of the daily water-surface inspection for MCs. This method showed both high sensitivity and high resolution for the separation of eight MC congeners with LODs ranging from 0.020 to 0.371 ng L–1 and limits of quantitation ranging from 0.066 to 1.24 ng L–1. The detection time was reduced to 11 min. Except for MC-RR (58.8% recovery at high concentration) and MC-WR (45.1% and 40.9% recoveries at medium and high concentrations, respectively), the recoveries of the other MCs ranged from 70 to 135%, and the relative standard deviation was less than 10%. Conclusion Eight different MCs in 12 water samples collected from Chaohu Lake, China, were analyzed. The sum of all MC congeners was calculated to range from 101 to 585 ng L–1 (less than the World Health Organization’s safe drinking water limit of 1 μg L–1 for MC-LR).

Funder

major science and technology program for water pollution control and treatment

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3