Leaching of nanoparticles from nano-enabled products for the protection of cultural heritage surfaces: a review

Author:

Brunelli Andrea,Calgaro Loris,Semenzin Elena,Cazzagon Virginia,Giubilato Elisa,Marcomini Antonio,Badetti ElenaORCID

Abstract

AbstractThe development of highly innovative techniques and technologies to enhance performance and technical sustainability of materials used in the field of cultural heritage conservation is providing conservators with innovative nanocomposites materials, including protective coatings, by merging the performances of engineered nanoparticles (NPs) with conventional chemicals. However, the human health and environmental risks that may potentially arise from these new materials are still largely unknown, requiring an adequate assessment and management along their entire life cycle. Concerns could emerge due to the leaching of the material containing NPs or of the NPs alone, especially during their use (exposure of the treated object to, e.g., heavy or acid rain) and disposal (when the wasted product is processed in, e.g., waste water treatment plants). To date, no standard leaching test methods have been specifically developed for nano-enabled products, with the consequent lack of data on the NPs potential exposure also in the field of cultural heritage. Therefore, an extensive review over the last 10 years by querying to the Scopus database “nanoparticles”, “leaching” and “coatings” has been herein reported to clearly highlight (i) the standard test methods used or adapted to estimate the NPs leaching from nano-based coatings; (ii) the available studies in which the NPs leaching from nano-based coatings was estimated without following any specific standard test method; (iii) the works focusing on other nanocomposite materials performances than leaching, in which standard test methods were applied, potentially useful to indirectly estimate NPs leaching. All the information gathered by this bibliographic search have been used to identify the most promising leaching tests for NPs estimation to be applied in the field of cultural heritage, especially for both large, e.g., building façades, and small, e.g., bronze works of art, surface areas from which the leaching of nano-based materials could be significant in terms of human health and ecological risks, based also on the (eco)toxicity of the leachate. The derived information can thus ultimately support effective risk management of innovative nano-enabled products, including the implementation of Safe by Design approaches.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3