Changes in microbial community structure and co-metabolism during the domestication of ofloxacin-degrading bacteria

Author:

Li Yanhong,Zhang Jing,Sha Naiqing,Tang Shen,Peng Yuqing,Zhao Yao

Abstract

Abstract Background Ofloxacin (OFL) is stable and difficult to degrade. It has been detected in water, soil, and plants throughout the world. This study domesticated OFL-contaminated livestock manure soil with simplified carbon sources to identify flora capable of effectively degrading OFL. The changes in the structural composition and diversity of the microbial community and the functional abundance of the soil flora were analyzed by metagenome sequencing technology. The Biolog-ECO microplate method was used to study the utilization of 31 different carbon sources by selected bacteria and to identify the best co-metabolized carbon source for degradation. Results Amino acid carbon sources were more likely to cause significant changes in community structures with increasing OFL concentrations during the acclimation stage. The abundance of Sphingobacterium decreased from 69.23% to 9.84%, while Alcaligenes increased from 0.27% to 62.79%, and Stenotrophomonas increased from 11.63% to 33.33%, becoming the dominant genus. The results suggested that Stenotrophomonas and Alcaligenes were potential candidate bacteria for the degradation of quinolone antibiotics, such as OFL. Compared with the first stage of acclimation, there was an 87% increase (the concentration was 30 mg·L−1) in the OFL degradation rate by functional flora obtained by gradient acclimation, and the functional abundance of the microbial community also increased and stabilized with the depth of the domestication process. The most significant changes in membrane transport were observed in the functional abundance of the microbial community, and it was found that itaconic acid, Tween 80, and L-aspartic acid could increase the biomass of the microbial community under OFL stress. Conclusion Significant changes in the bacterial composition and functional abundance of the microbial community resulted from the addition of amino acid carbon sources, together with the OFL concentration. Functional flora resulting from domestication were better able to degrade OFL. The addition of a co-metabolic carbon source significantly enhanced the biomass of the functional flora. In this study, co-metabolism was performed by adding specific carbon sources, thus achieving metabolic diversity of functional flora and ultimately efficient biodegradation of OFL. This was an important discovery in the field of microbial remediation of environmental contamination.

Funder

the National Science Foundation of China

the Natural Science Foundation of Guangxi

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3