Non-target screening for detecting the occurrence of plant metabolites in river waters

Author:

Nanusha Mulatu Yohannes,Krauss Martin,Brack WernerORCID

Abstract

Abstract Background In surface waters, using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS), typically large numbers of chemical signals often with high peak intensity remain unidentified. These chemical signals may represent natural compounds released from plants, animals and microorganisms, which may contribute to the cumulative toxic risk. Thus, attempts were made to identify natural compounds in significant concentrations in surface waters by identifying overlapping LC-HRMS peaks between extracts of plants abundant in the catchment and river waters using a non-target screening (NTS) work flow. Results The result revealed the presence of several thousands of overlapping peaks between water—and plants from local vegetation. Taking this overlap as a basis, 12 SPMs from different compound classes were identified to occur in river waters with flavonoids as a dominant group. The concentrations of the identified compounds ranged from 0.02 to 5 µg/L with apiin, hyperoside and guanosine with highest concentrations. Most of the identified compounds exceeded the threshold for toxicological concern (TTC) (0.1 µg/L) for non-genotoxic and non-endocrine disrupting chemicals in drinking water often by more than one order of magnitude. Conclusion Our results revealed the contribution of chemicals eluted from the vegetation in the catchment to the chemical load in surface waters and help to reduce the number of unknowns among NTS high-intensity peaks detected in rivers. Since secondary plant metabolites (SPMs) are often produced for defence against other organisms and since concentrations ranges are clearly above TTC a contribution to toxic risks on aquatic organisms and impacts on drinking water safety cannot be excluded. This demands for including these compounds into monitoring and assessment of water quality.

Funder

H2020 European Research Council

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3