Author:
Guauque Torres María del Pilar,Foresti María Laura,Ferreira María Luján
Abstract
Abstract
In the last few years, synthesis of carrier-free immobilized biocatalysts by cross-linking of enzyme aggregates has appeared as a promising technique. Cross-linked enzyme aggregates (CLEAs) present several interesting advantages over carrier-bound immobilized enzymes, such as highly concentrated enzymatic activity, high stability of the produced superstructure, important production costs savings by the absence of a support, and the fact that no previous purification of the enzyme is needed. However, the published literature evidences that a) much specific non-systematic exploratory work is being done and, b) recovered activity calculations in CLEAs still need to be optimized. In this context, this contribution presents results of an optimized procedure for the calculation of the activity retained by CLEAs, based on the comparison of their specific activity relative to their free enzyme counterparts. The protocol implies determination of precipitable protein content in commercial enzyme preparations through precipitation with ammonium sulphate and a protein co-feeder. The identification of linear ranges of activity versus concentration/amount of protein in the test reaction is also required for proper specific activity determinations. By use of mass balances that involve the protein initially added to the synthesis medium, and the protein remaining in the supernatant and washing solutions (these last derived from activity measurements), the precipitable protein present in CLEAs is obtained, and their specific activity can be calculated. In the current contribution the described protocol was applied to CLEAs of Thermomyces lanuginosa lipase, which showed a recovered specific activity of 11.1% relative to native lipase. The approach described is simple and can easily be extended to other CLEAs and also to carrier-bound immobilized enzymes for accurate determination of their retained activity.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Biophysics
Reference32 articles.
1. Arroyo SM: Ph. D. Thesis, Síntesis de ácidos 2-aril-propiónicos homoquirales mediante esterificación enantioselectiva catalizada por lipasas inmovilizadas. Madrid, Spain: Universidad Complutense; 1995:68–69.
2. Bloomer S, Adlercreutz P, Mattiasson B: Facile synthesis of fatty acid esters in high yields. Enzyme Microb Technol 1992, 14: 546–552. 10.1016/0141-0229(92)90125-8
3. Cao L, Van Langen L, Van Rantwijk F, Sheldon RA: Cross-linked aggregates of penicillin acylase: robust catalysts for the synthesis of β-lactam antibiotics. J Mol Catal B: Enzym 2001, 11: 5.
4. Cao L: Immobilised enzymes: science or art? Curr Opin Chem Biol 2005, 9: 217–226. 10.1016/j.cbpa.2005.02.014
5. Cao L, Van Langen L, Sheldon RA: Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 2003, 14: 387–394. 10.1016/S0958-1669(03)00096-X
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献