Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize

Author:

Marks Bettina Berquó,Megías Manuel,Nogueira Marco Antonio,Hungria Mariangela

Abstract

Abstract Agricultural sustainability may represent the greatest encumbrance to increasing food production. On the other hand, as a component of sustainability, replacement of chemical fertilizers by bio-fertilizers has the potential to lower costs for farmers, to increase yields, and to mitigate greenhouse-gas emissions and pollution of water and soil. Rhizobia and plant-growth-promoting rhizobacteria (PGPR) have been broadly used in agriculture, and advances in our understanding of plant-bacteria interactions have been achieved; however, the use of signaling molecules to enhance crop performance is still modest. In this study, we evaluated the effects of concentrated metabolites (CM) from two strains of rhizobia—Bradyrhizobium diazoefficiens USDA 110T (BD1) and Rhizobium tropici CIAT 899T (RT1)—at two concentrations of active compounds (10–8 and 10–9 M)—on the performances of two major plant-microbe interactions, of Bradyrhizobium spp.-soybean (Glycine max (L.) Merr.) and Azospirillum brasilense-maize (Zea mays L.). For soybean, one greenhouse and two field experiments were performed and effects of addition of CM from the homologous and heterologous strains, and of the flavonoid genistein were investigated. For maize, three field experiments were performed to examine the effects of CM from RT1. For soybean, compared to the treatment inoculated exclusively with Bradyrhizobium, benefits were achieved with the addition of CM-BD1; at 10–9 M, grain yield was increased by an average of 4.8%. For maize, the best result was obtained with the addition of CM-RT1, also at 10–9 M, increasing grain yield by an average of 11.4%. These benefits might be related to a combination of effects attributed to secondary compounds produced by the rhizobial strains, including exopolysaccharides (EPSs), plant hormones and lipo-chitooligosaccharides (LCOs). The results emphasize the biotechnological potential of using secondary metabolites of rhizobia together with inoculants containing both rhizobia and PGPR to improve the growth and yield of grain crops.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Reference62 articles.

1. Andrade DS, Hamakawa PJ: Estimativa do número de células de rizóbio no solo e inoculantes por infecção em planta. In Hungria M. Edited by: Araujo RS. Manual de métodos empregados em estudos de microbiologia, Embrapa-SPI, Brasília, Brazil; 1994:63–94.

2. Araújo FF, Hungria M: Nodulação e rendimento de soja co-inoculada com Bacillus subtilis e Bradyrhizobium japonicum/B. elkanii. Pesq Agropec Bras 1999,34(9):1633–1643. 10.1590/S0100-204X1999000900014

3. Araújo FF, Henning AA, Hungria M: Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 2005,21(8–9):1637–1642.

4. Arshad M, Frankenberger WT: Microbial production of plant hormones. Plant Soil 1991, 133: 1–8. 10.1007/BF00011893

5. Ashraf MA, Rasool M, Mirza MS: Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.). Adv Biol Res 2011,5(6):348–355.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3