Reduction of meckelin leads to general loss of cilia, ciliary microtubule misalignment and distorted cell surface organization

Author:

Picariello Tyler,Valentine Megan Smith,Yano Junji,Van Houten Judith

Abstract

Abstract Background Meckelin (MKS3), a conserved protein linked to Meckel Syndrome, assists in themigration of centrioles to the cell surface for ciliogenesis. We explored foradditional functions of MKS3p using RNA interference (RNAi) and expression of FLAGepitope tagged protein in the ciliated protozoan Paramecium tetraurelia.This cell has a highly organized cell surface with thousands of cilia and basalbodies that are grouped into one or two basal body units delineated by ridges. Thehighly systematized nature of the P. tetraurelia cell surface provides aresearch model of MKS and other ciliopathies where changes in ciliary structure,subcellular organization and overall arrangement of the cell surface can be easilyobserved. We used cells reduced in IFT88 for comparison, as theinvolvement of this gene’s product with cilia maintenance and growth is wellunderstood. Results FLAG-MKS3p was found above the plane of the distal basal body in the transitionzone. Approximately 95% of those basal bodies observed had staining for FLAG-MKS3.The RNAi phenotype for MKS3 depleted cells included global shortening andloss of cilia. Basal body structure appeared unaffected. On the dorsal surface,the basal bodies and their associated rootlets appeared rotated out of alignmentfrom the normal anterior-posterior rows. Likewise, cortical units were abnormal inshape and out of alignment from normal rows. A GST pull down using the MKS3coiled-coil domain suggests previously unidentified interacting partners. Conclusions Reduction of MKS3p shows that this protein affects development and maintenance ofcilia over the entire cell surface. Reduction of MKS3p is most visible on thedorsal surface. The anterior basal body is attached to and moves along thestriated rootlet of the posterior basal body in preparation for duplication. Wepropose that with reduced MKS3p, this attachment and guidance of the basal body islost. The basal body veers off course, causing basal body rows to be misalignedand units to be misshapen. Rootlets form normally on these misaligned basal bodiesbut are rotated out of their correct orientation. Our hypothesis is furthersupported by the identification of novel interacting partners of MKS3p including akinetodesmal fiber protein, KdB2.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3